Câu hỏi:

13/07/2024 2,972 Lưu

Cho góc nhị diện có hai mặt là hai nửa mặt phẳng (P), (Q) và cạnh của góc nhị diện là đường thẳng d.

Qua một điểm O trên đường thẳng d, ta kẻ hai tia Ox, Oy lần lượt thuộc hai nửa mặt phẳng (P), (Q) và cùng vuông góc với đường thẳng d. Góc xOy gọi là góc phẳng nhị diện của góc nhị diện đã cho (Hình 38).

Cho góc nhị diện có hai mặt là hai nửa mặt phẳng (P), (Q) và cạnh của góc nhị diện là đường thẳng d. (ảnh 1)

Giả sử góc x’O’y’ cũng là góc phẳng nhị diện của góc nhị diện đã cho với O’ khác O (Hình 39).

Hãy so sánh số đo của hai góc xOy và x’O’y’.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét (P) có: Ox d và Ox’ d nên Ox // O’x’.

Xét (Q) có: Oy d và Oy’ d nên Oy // O’y’.

Từ đó ta có: góc giữa đường thẳng Ox và Oy bằng góc giữa đường thẳng O’x’ và O’y’ hay số đo của hai góc xOy và x’O’y’ bằng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) Ta có: SA (ABCD) và AB (ABCD), AD (ABCD).

Suy ra: SA AB, SA AD.

Mà AB ∩ AD = A SA.

Do đó BAD^ là góc phẳng nhị diện của góc nhị diện [B, SA, D].

Vì ABCD là hinh thoi cạnh a và AC = a nên ta có AD = AC = CD = a.

Suy ra tam giác ACD đều.

Khi đó CAD^=60°.

Ta có:BAD^=BAC^+CAD^=60°+60°=120°.

Vậy số đo của góc nhị diện [B, SA, D] bằng 120°

Lời giải

Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình thoi cạnh a và AC = a. a) Tính số đo của góc nhị diện [B, SA, C]. (ảnh 1)

a) Ta có: SA (ABCD) và AB (ABCD), AC (ABCD).

Suy ra: SA AB, SA AC.

Mà AB ∩ AC = A SA.

Do đó BAC^ là góc phẳng nhị diện của góc nhị diện [B, SA, C].

Vì ABCD là hinh thoi cạnh a và AC = a nên ta có AB = AC = BC = a.

Suy ra tam giác ABC đều. Khi đó BAC^=60°.

Vậy số đo của góc nhị diện [B, SA, C] = 60°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP