Câu hỏi:
15/11/2023 462
Để công trình xây dựng được an toàn và bền vững, người ta thường xây tường nhà vuông góc với nền nhà (Hình 44).
Hình ảnh tường nhà vuông góc với nền nhà gợi nên khái niệm nào trong hình học?
Để công trình xây dựng được an toàn và bền vững, người ta thường xây tường nhà vuông góc với nền nhà (Hình 44).

Hình ảnh tường nhà vuông góc với nền nhà gợi nên khái niệm nào trong hình học?
Quảng cáo
Trả lời:
Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:
Hình ảnh tường nhà vuông góc với nền nhà gợi nên khái niệm hai mặt phẳng vuông góc.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có: SA ⊥ (ABCD) và BD ⊂ (ABCD) nên SA ⊥ BD.
Vì ABCD là hình thoi nên BD ⊥ AC.
Ta có: BD ⊥ SA, BD ⊥ AC và SA ∩ AC = A trong (SAC).
Suy ra BD ⊥ (SAC).
Mà BD ⊂ (SBD) nên (SAC) ⊥ (SBD).
Lời giải

a) Xét tam giác SAB vuông cân tại S có: SM là đường trung tuyến (do M là trung điểm của AB) nên SM ⊥ AB.
Do A ∈ (SAB) ∩ (ABCD);
B ∈ (SAB) ∩ (ABCD).
Suy ra AB = (SAB) ∩ (ABCD).
Ta có: (SAB) ⊥ (ABCD);
SM ⊂ (SAB), SM ⊥ AB;
(SAB) ∩ (ABCD) = AB.
Từ đó, ta có SM ⊥ (ABCD).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.