Câu hỏi:

11/07/2024 761

b) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng đó thì vuông góc với mặt phẳng còn lại.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b)

b) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng đó thì vuông góc với mặt phẳng còn lại. (ảnh 1)

Giả sử có ba mặt phẳng (P), (Q), (R) thỏa mãn (P) // (Q) và (R) (P). Ta cần chứng minh (R) (Q).

Gọi a = (P) ∩ (R), lấy d (R) sao cho a d.

Ta có: (R) (P), a = (R) ∩ (P), d (R) và a d, suy ra d (P).

Mà (P) // (Q), d (R) nên d (Q).

Suy ra (Q) (R).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình thoi, SA ⊥ (ABCD). Chứng minh rằng (SAC) vuông góc (SBD). (ảnh 1)

Ta có: SA (ABCD) và BD (ABCD) nên SA BD.

Vì ABCD là hình thoi nên BD AC.

Ta có: BD SA, BD AC và SA ∩ AC = A trong (SAC).

Suy ra BD (SAC).

Mà BD (SBD) nên (SAC) (SBD).

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt phẳng (SAB) vuông góc với mặt đáy, tam giác SAB vuông cân tại S.  (ảnh 1)

a) Xét tam giác SAB vuông cân tại S có: SM là đường trung tuyến (do M là trung điểm của AB) nên SM AB.

Do A (SAB) ∩ (ABCD);

      B (SAB) ∩ (ABCD).

Suy ra AB = (SAB) ∩ (ABCD).

Ta có: (SAB) (ABCD);

         SM (SAB), SM AB;

           (SAB) ∩ (ABCD) = AB.

Từ đó, ta có SM (ABCD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP