Câu hỏi:
11/07/2024 761
b) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng đó thì vuông góc với mặt phẳng còn lại.
b) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng đó thì vuông góc với mặt phẳng còn lại.
Quảng cáo
Trả lời:
b)

Giả sử có ba mặt phẳng (P), (Q), (R) thỏa mãn (P) // (Q) và (R) ⊥ (P). Ta cần chứng minh (R) ⊥ (Q).
Gọi a = (P) ∩ (R), lấy d ⊂ (R) sao cho a ⊥ d.
Ta có: (R) ⊥ (P), a = (R) ∩ (P), d ⊂ (R) và a ⊥ d, suy ra d ⊥ (P).
Mà (P) // (Q), d ⊂ (R) nên d ⊥ (Q).
Suy ra (Q) ⊥ (R).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có: SA ⊥ (ABCD) và BD ⊂ (ABCD) nên SA ⊥ BD.
Vì ABCD là hình thoi nên BD ⊥ AC.
Ta có: BD ⊥ SA, BD ⊥ AC và SA ∩ AC = A trong (SAC).
Suy ra BD ⊥ (SAC).
Mà BD ⊂ (SBD) nên (SAC) ⊥ (SBD).
Lời giải

a) Xét tam giác SAB vuông cân tại S có: SM là đường trung tuyến (do M là trung điểm của AB) nên SM ⊥ AB.
Do A ∈ (SAB) ∩ (ABCD);
B ∈ (SAB) ∩ (ABCD).
Suy ra AB = (SAB) ∩ (ABCD).
Ta có: (SAB) ⊥ (ABCD);
SM ⊂ (SAB), SM ⊥ AB;
(SAB) ∩ (ABCD) = AB.
Từ đó, ta có SM ⊥ (ABCD).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.