Câu hỏi:

12/07/2024 2,198

Cho hình chóp S.ABC có SA (ABC), AI BC (I BC), AH SI (H SI). Chứng minh rằng khoảng cách từ A đến mặt phẳng (SBC) bằng AH.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABC có SA vuông góc (ABC), AI vuông góc BC (I thuộc BC), AH vuông góc SI (H thuộc SI).  (ảnh 1)

Do SA (ABC) và BC (ABC) nên SA BC.

Ta có: BC SA, BC AI và SA ∩ AI = A trong (SAI).

Suy ra BC (SAI).

Mà AH (SAI) nên BC AH.

Ta có: AH BC, AH SI và BC ∩ SI = I trong (SBC).

Suy ra AH (SBC).

Ta thấy H (SBC) và AH (SBC) nên khoảng cách từ A đến mặt phẳng (SBC) bằng AH.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA (ABC). Tính d(SA, BC).

Xem đáp án » 13/07/2024 9,470

Câu 2:

Cho hình lăng trụ ABC.A’B’C’ có cạnh bên bằng a, góc giữa đường thẳng AA’ và mặt phẳng (ABC) bằng 60°. Tính khoảng cách giữa hai mặt phẳng (ABC) và (A’B’C’).

Xem đáp án » 13/07/2024 2,878

Câu 3:

Cho hình chóp S.ABC có SA = a, góc giữa SA và mp(ABC) là 60°. Gọi M, N lần lượt là trung điểm của cạnh SA và SB. Chứng minh MN // (ABC) và tính d(MN, (ABC)).

Xem đáp án » 13/07/2024 2,684

Câu 4:

Cho hình chóp S.ABCD có SA (ABCD), đáy ABCD là hình vuông cạnh a, SA = a (Hình 78).

Cho hình chóp S.ABCD có SA vuông góc (ABCD), đáy ABCD là hình vuông cạnh a, SA = a (Hình 78).  (ảnh 1)

a) Tính khoảng cách từ điểm S đến đường thẳng CD.

Xem đáp án » 13/07/2024 2,410

Câu 5:

b) Chứng minh rằng BD (SAC) và tính khoảng cách giữa hai đường thẳng BD và SC.

Xem đáp án » 11/07/2024 1,835

Câu 6:

Cho hình tứ diện ABCD có AB = a, BC = b, BD = c, ABC^=ABD^=BCD^=90°. Gọi M, N, P lần lượt là trung điểm của AB, AC, AD (Hình 77).

a) Tính khoảng cách từ điểm C đến đường thẳng AB.

Xem đáp án » 12/07/2024 1,639

Bình luận


Bình luận
Vietjack official store