Câu hỏi:

13/07/2024 2,662

Cho hình chóp S.ABC có SA = a, góc giữa SA và mp(ABC) là 60°. Gọi M, N lần lượt là trung điểm của cạnh SA và SB. Chứng minh MN // (ABC) và tính d(MN, (ABC)).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABC có SA = a, góc giữa SA và mp(ABC) là 60 độ. Gọi M, N lần lượt là trung điểm của cạnh SA và SB.  (ảnh 1)

Xét ∆SAB có: M, N lần lượt là trung điểm của SA và SB nên MN là đường trung bình của ∆SAB. Do đó MN // AB.

Hơn nữa AB (ABC) nên MN // (ABC).

Suy ra d(MN, (ABC)) = d(M, (ABC)).

Gọi H là hình chiếu vuông góc của S trên (ABC) hay SH (ABC).

Trong (SAH) kẻ MK // SH (K AH).

Mà SH (ABC) suy ra MK (ABC).

Khi đó, d(M, (ABC)) = MK.

Vì SH (ABC) nên HA là hình chiếu của SA trên (ABC).

Suy ra góc góc giữa đường thẳng SA và mặt phẳng (ABC) bằng SAH^=60°.

Ta có: SH (ABC) và AH (ABC) nên SH AH.

Xét tam giác SAH vuông tại H (do SH AH) có:

sinSAH^=SHSA, suy ra SH=SA.sinSAH^=a.sin60°=a32.

M là trung điểm của SA và MK // SH nên K là trung điểm của AH, do đó MK là đường trung bình của ∆SAH.

Suy ra MK=12SH=12.a32=a34.

Vậy dMN,ABC=dM,ABC=MK=a34.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA (ABC). Tính d(SA, BC).

Xem đáp án » 13/07/2024 9,378

Câu 2:

Cho hình lăng trụ ABC.A’B’C’ có cạnh bên bằng a, góc giữa đường thẳng AA’ và mặt phẳng (ABC) bằng 60°. Tính khoảng cách giữa hai mặt phẳng (ABC) và (A’B’C’).

Xem đáp án » 13/07/2024 2,818

Câu 3:

Cho hình chóp S.ABCD có SA (ABCD), đáy ABCD là hình vuông cạnh a, SA = a (Hình 78).

Cho hình chóp S.ABCD có SA vuông góc (ABCD), đáy ABCD là hình vuông cạnh a, SA = a (Hình 78).  (ảnh 1)

a) Tính khoảng cách từ điểm S đến đường thẳng CD.

Xem đáp án » 13/07/2024 2,332

Câu 4:

Cho hình chóp S.ABC có SA (ABC), AI BC (I BC), AH SI (H SI). Chứng minh rằng khoảng cách từ A đến mặt phẳng (SBC) bằng AH.

Xem đáp án » 12/07/2024 2,138

Câu 5:

b) Chứng minh rằng BD (SAC) và tính khoảng cách giữa hai đường thẳng BD và SC.

Xem đáp án » 11/07/2024 1,795

Câu 6:

Cho hình tứ diện ABCD có AB = a, BC = b, BD = c, ABC^=ABD^=BCD^=90°. Gọi M, N, P lần lượt là trung điểm của AB, AC, AD (Hình 77).

a) Tính khoảng cách từ điểm C đến đường thẳng AB.

Xem đáp án » 12/07/2024 1,625

Bình luận


Bình luận
Vietjack official store