Câu hỏi:
13/07/2024 16,617Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC). Tính d(SA, BC).
Câu hỏi trong đề: Giải SGK Toán 11 CD Bài 5. Khoảng cách có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
Gọi I là trung điểm của BC.
Xét ∆ABC đều có: AI là đường trung tuyến (do I là trung điểm của BC).
Suy ra AI ⊥ BC.
Do SA ⊥ (ABC) và AI ⊂ (ABC) nên SA ⊥ AI.
Ta có: AI ⊥ SA và AI ⊥ BC.
Suy ra đoạn thẳng AI là đoạn vuông góc chung của hai đường thẳng SA và BC.
Từ đó ta có d(SA, BC) = AI.
Xét ∆ABC đều cạnh a, có I là trung điểm của BC nên
Áp dụng định lí Pythagore vào tam giác ABI vuông tại I (do AI ⊥ BC) có:
AB2 = AI2 + BI2
Suy ra
Vậy
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình vuông cạnh a, SA = a (Hình 78).
a) Tính khoảng cách từ điểm S đến đường thẳng CD.
Câu 3:
Cho hình lăng trụ ABC.A’B’C’ có cạnh bên bằng a, góc giữa đường thẳng AA’ và mặt phẳng (ABC) bằng 60°. Tính khoảng cách giữa hai mặt phẳng (ABC) và (A’B’C’).
Câu 4:
Cho hình chóp S.ABC có SA ⊥ (ABC), AI ⊥ BC (I ∈ BC), AH ⊥ SI (H ∈ SI). Chứng minh rằng khoảng cách từ A đến mặt phẳng (SBC) bằng AH.
Câu 5:
Cho hình chóp S.ABC có SA = a, góc giữa SA và mp(ABC) là 60°. Gọi M, N lần lượt là trung điểm của cạnh SA và SB. Chứng minh MN // (ABC) và tính d(MN, (ABC)).
Câu 6:
b) Chứng minh rằng BD ⊥ (SAC) và tính khoảng cách giữa hai đường thẳng BD và SC.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận