Câu hỏi:
16/11/2023 1,178Cho tam giác ABC nhọn, M là trung điểm BC và H là trực tâm của tam giác ABC. Đường thẳng qua H và vuông góc với MH cắt AB và AC theo thứ tự ở I và K. Qua C kẻ đường thẳng song song với IK, cắt AH và AB theo thứ tự tại N và D. Khẳng định nào sau đây là đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: A

Ta có AN ⊥ BC (do H là trực tâm của tam giác ABC) nên HN ⊥ CM (H ∈ AN, M ∈ BC).
Theo đề bài ta có IK // DC, IK ⊥ HM, do đó HM ⊥ DC hay HM ⊥ NC (N ∈ DC).
Tam giác HNC có: HM ⊥ NC, CM ⊥ HN.
Do đó M là trực tâm của tam giác HNC.
Suy ra MN ⊥ HC.
Lại có HC ⊥ AB nên MN // AB hay MN // DB.
Xét tam giác CBD có MN // DB nên theo định lí Thalès ta có:
hay (Vì CM = MB, do M là trung điểm của BC)
Suy ra CN = ND.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A

Xét tam giác ACE có CE // BD nên theo định lí Thalès ta có:
(1)
Xét tam giác AFE có FE // CD nên theo định lí Thalès ta có:
(2)
Từ (1) và (2) suy ra .
Từ đó ta có AC ⋅ AC = AB ⋅ AF hay AC2 = AB ⋅ AF.
Lời giải
Đáp án đúng là: C

Xét tam giác ADB có MP // AB nên theo định lí Thalès ta có:
(1)
Xét tam giác CDB có NP // DC nên theo định lí Thalès ta có:
(2)
Từ (1) và (2) suy ra .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.