Câu hỏi:

16/11/2023 3,190

Cho hình thang ABCD (AB // CD). Đường thẳng song song với đáy AB cắt các cạnh bên AD, BC và các đường chéo BD, AC lần lượt tại M, N, P, Q. Khi đó tỉ số MDAD  bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho hình thang ABCD (AB // CD). Đường thẳng song song với đáy AB cắt các cạnh bên AD, BC và các đường chéo BD, AC lần lượt tại M, N, P, Q. (ảnh 1)

 

Xét tam giác ADB có MP // AB nên theo định lí Thalès ta có:

MDAD=DPBD(1)

Xét tam giác CDB có NP // DC nên theo định lí Thalès ta có:

DPBD=CNCB (2)

Từ (1) và (2) suy ra MDAD=CNCB=DPBD  .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Cho góc xAy khác góc bẹt. Trên tia Ax lấy các điểm B, C. Qua B và C kẻ hai đường thẳng song song với nhau, cắt Ay lần lượt tại D và E. Qua E vẽ đường thẳng song song với CD cắt tia Ax tại F. Khi đó AC2 bằng A. AB ⋅ AF; B. AB ⋅ BF; C. CA ⋅ AF; D. CB ⋅ AF. (ảnh 1)

Xét tam giác ACE có CE // BD nên theo định lí Thalès ta có:

ABAC=ADAE(1)

Xét tam giác AFE có FE // CD nên theo định lí Thalès ta có:

ACAF=ADAE(2)

Từ (1) và (2) suy ra  ABAC=ACAF=ADAE.

Từ đó ta có AC ⋅ AC = AB ⋅ AF hay AC2 = AB ⋅ AF.

Lời giải

Đáp án đúng là: C

Cho tam giác ABC. Trên cạnh BC lấy điểm D sao cho BC = 2BD. Trên đoạn AD lấy điểm O sao cho (ảnh 1)

Kẻ DH // CI (H ∈ AB), do đó DH // IO.

Xét tam giác ADH có DH // IO nên theo định lí Thalès ta có:

AIIH=AOOD hay AIIH=32  .

Suy ra AI = 3t và IH = 2t (với t > 0).

Ta có D thuộc cạnh BC và BC = 2BD, suy ra BC = 2CD.

Xét tam giác BIC có DH // IC nên theo định lí Thalès ta có:

BIIH=BCCD hay BIIH=21

Suy ra BI = 2IH = 2 ⋅ 2t = 4t.

Vậy AIIB=3t4t=34 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP