Câu hỏi:
29/11/2023 1,473
Cho tam giác ABC có đường phân giác trong AD. Gọi M và N theo thứ tự là hình chiếu của B và C trên đường thẳng AD. Khi đó tỉ số bằng tỉ số
Cho tam giác ABC có đường phân giác trong AD. Gọi M và N theo thứ tự là hình chiếu của B và C trên đường thẳng AD. Khi đó tỉ số bằng tỉ số
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C

Xét hai tam giác ABM và ACN có:
(do AD là phân giác của góc A)
Suy ra ΔABM ᔕ ΔACN (g – g).
Suy ra .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C

Xét tam giác AKD vuông tại K và tam giác CHB vuông tại H có:
AD = BC (do ABCD là hình bình hành)
(AD // BC, hai góc so le trong)
Do đó, ∆AKD = ∆CHB (cạnh huyền – góc nhọn).
Suy ra AK = HC.
Xét hai tam giác AHB và AEC có:
: Góc chung
Do đó, ΔAHB ᔕ ΔAEC (g – g).
Suy ra .
Suy ra AB ⋅ AE = AC ⋅ AH (1).
Xét hai tam giác ADK và ACF có
: Góc chung
Do đó, ΔADK ᔕ ΔACF (g – g).
Suy ra .
Suy ra AD ⋅ AF = AC ⋅ AK (2).
Lấy (1) + (2) ta được AB ⋅ AE + AD ⋅ AF = AC ⋅ AH + AC ⋅ AK
Lại có AC ⋅ AH + AC ⋅ AK = AC ⋅ (AH + AK) = AC ⋅ (AH + HC) = AC ⋅ AC = AC2.
Vậy AB ⋅ AE + AD ⋅ AF = AC2.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A

Xét hai tam giác GCF và GDA có:
(đối đỉnh)
(AD // BF, hai góc so le trong)
Suy ra ΔGCF ᔕ ΔGDA (g – g) (1).
Xét hai tam giác GCF và ABF có:
: Góc chung
(GC // BA, hai góc đồng vị)
Suy ra ΔGCF ᔕ ΔABF (g – g) (2).
Từ (1) và (2) suy ra ΔGDA ᔕ ΔABF.
Vậy A sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.