Câu hỏi:

29/11/2023 759

Cho tam giác ABC và d là đường thẳng tùy ý qua B. Qua E là điểm bất kì trên AC, vẽ đường thẳng song song với AB và BC, lần lượt cắt d tại M và N. Gọi D là giao điểm của ME và BC. Đường thẳng NE cắt AB và MC lần lượt tại F và K. Khi đó tam giác AFN đồng dạng với tam giác nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC và d là đường thẳng tùy ý qua B. Qua E là điểm bất kì trên AC, vẽ đường (ảnh 1)
Cho tam giác ABC và d là đường thẳng tùy ý qua B. Qua E là điểm bất kì trên AC, vẽ đường (ảnh 2)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình bình hành ABCD có AC > BD. Kẻ CE AB tại E, CF AD tại F, BH AC tại H và DK AC tại K. Khẳng định nào sau đây là đúng?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C

Cho hình bình hành ABCD có AC > BD. Kẻ CE vuông góc AB tại E, CF vuông góc AD tại F (ảnh 1)

Xét tam giác AKD vuông tại K và tam giác CHB vuông tại H có:

AD = BC (do ABCD là hình bình hành)

DAK^=BCH^ (AD // BC, hai góc so le trong)

Do đó, ∆AKD = ∆CHB (cạnh huyền – góc nhọn).

Suy ra AK = HC.

Xét hai tam giác AHB và AEC có:

AHB^=AEC^=90°

EAC^: Góc chung

Do đó, ΔAHB ΔAEC (g – g).

Suy ra ABAC=AHAE.

Suy ra AB AE = AC AH (1).

Xét hai tam giác ADK và ACF có

AKD^=AFC^=90°

FAC^: Góc chung

Do đó, ΔADK ΔACF (g – g).

Suy ra ADAC=AKAF.

Suy ra AD AF = AC AK (2).

Lấy (1) + (2) ta được AB AE + AD AF = AC AH + AC AK

Lại có AC AH + AC AK = AC (AH + AK) = AC (AH + HC) = AC AC = AC2.

Vậy AB AE + AD AF = AC2.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A

Cho hình bình hành ABCD. Một đường thẳng bất kì đi qua A cắt BD tại E và cắt các đường thẳng BC (ảnh 1)

Xét hai tam giác GCF và GDA có:

AGD^=FGC^ (đối đỉnh)

DAG^=GFC^ (AD // BF, hai góc so le trong)

Suy ra ΔGCF ΔGDA (g – g) (1).

Xét hai tam giác GCF và ABF có:

F^: Góc chung

FCG^=FBA^ (GC // BA, hai góc đồng vị)

Suy ra ΔGCF ΔABF (g – g) (2).

Từ (1) và (2) suy ra ΔGDA ΔABF.

Vậy A sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hình vẽ sau. Khẳng định nào dưới đây là sai?

Cho hình vẽ sau. Khẳng định nào dưới đây là sai? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hình vẽ, độ dài cạnh DC bằng

Cho hình vẽ, độ dài cạnh DC bằng   A. 7 cm; B. 8 cm; C. 9 cm; D. 10 cm. (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay