Câu hỏi:

05/12/2023 4,754

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(0; –2), B(1; 1), C(4; 2). Phương trình đường trung tuyến của tam giác ABC kẻ từ A là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: D

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(0; –2), B(1; 1), C(4; 2). Phương trình đường trung tuyến của tam giác ABC kẻ từ A là (ảnh 1)

Gọi M là trung điểm của cạnh BC .

Với B(1; 1) và C(4; 2), ta có M52;32, .

Với A(0; –2) và M52;32  ta có AM=52;72 .

Đường trung tuyến AM nhận AM=52;72  làm một vectơ chỉ phương nên nhận n=7;5  làm một vectơ pháp tuyến.

Vậy phương trình đường trung tuyến kẻ từ A của tam giác ABC là:

–7x + 5(y + 2) = 0 hay –7x + 5y + 10 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có M(2; 0) là trung điểm của cạnh AB. Đường trung tuyến và đường (ảnh 1)

Gọi AH và AD lần lượt là các đường cao và trung tuyến kẻ từ A của tam giác ABC.

Tọa độ điểm A là nghiệm của hệ phương trình:

7x2y3=06xy4=0x=1y=2. Do đó A(1; 2).

Vì M là trung điểm của AB nên: xB=2xMxA=3yB=2yMyA=2. Do đó B(3;2).

Ta có AH BC nên vectơ chỉ phương của AH là vectơ pháp tuyến của BC.

Đường thẳng AH: 6x – y – 4 = 0nAH=6;1 nên nBC=1;6.

Đường thẳng BC đi qua B(3;2)nhận nBC=1;6 làm một vectơ pháp tuyến nên có phương trình là: 1(x – 3) + 6(y + 2) = 0 hay x + 6y + 9 = 0.

D là giao điểm của BC và AD nên tọa độ điểm D là nghiệm của hệ phương trình:

7x2y3=0x+6y+9=0x=0y=32. Do đó D0;32.

Mà D là trung điểm của BC nên suy ra: xC=2xDxB=3yC=2yDyB=1. Do đó C(–3; –1).

Với A(1; 2)C(–3; –1) ta có AC=4;3, suy ra nAC=3;4.

Đường thẳng AC đi qua A(1; 2) và nhận nAC=3;4 làm một vectơ pháp tuyến nên có phương trình là: 3(x – 1) – 4(y – 2) = 0 tức là 3x – 4y + 5 = 0.

Câu 2

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D

Trong mặt phẳng cho tam giác ABC cân tại C có B(2; –1), A(4; 3). Phương trình đường cao CH  (ảnh 1)

Gọi H là trung điểm của AB.

Tam giác ABC cân tại C nên đường trung tuyến CH đồng thời là đường cao, do đó CH AB.

Khi đó đường cao CH nhận vectơ chỉ phương của AB làm một vectơ pháp tuyến.

Với B(2; –1) và A(4; 3), ta có H(3; 1) và AB=2;4=21;2.

Khi đó đường cao CH đi qua điểm H(3; 1) và nhận n=1;2 làm một vectơ pháp tuyến nên có phương trình là: 1(x – 3) + 2(y – 1) = 0, tức là x + 2y – 5 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP