Câu hỏi:
13/07/2024 4,881Một bạn học sinh thả diều ngoài đồng, cho biết đoạn dây diều từ tay bạn đến diều dài 130m và bạn đứng cách nơi diều được thả lên theo phương thẳng đứng là 50m. Tính độ cao của con diều so với mặt đất, biết tay bạn học sinh cách mặt đất 1,5m.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi tay của bạn học sinh là điểm A, diều là điểm B, BC, BD là đường thẳng đứng.
Như vậy đoạn dây từ tay bạn đến diều dài 130m nên ta có AB = 130m, bạn đứng cách nơi diều được thả lên theo phương thẳng đứng là 50m nên AC = 50m.
Tay bạn cách mặt đất 1,5m nên CD = 1,5m.
Áp dụng định lý Pitago vào Δ vuông ABC ta có:
BC² = AB² – AC² = 130² – 50² = 14400 ⇒ BC = 120m
⇒ Độ cao của con diều so với mặt đất là đoạn BD là:
BD = BC + CD = 120 + 1,5 = 121,5m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác nhọn ABC, AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho MH = MK.
a, Chứng minh: BHCK là hình bình hành.
b, Chứng minh: BK vuông góc AB.
c, Chứng minh: tâm giác MEF cân.
d, CQ vuông góc BK tại Q. Chứng minh: EF vuông góc EQ.
Câu 2:
Bánh xe đạp có bán kính 50cm (kể cả lốp). Một người quay bánh xe 5 vòng quanh trục thì quãng đường đi được là bao nhiêu?
Câu 3:
Biết đồ thị hàm số y = ax2 + bx + c đi qua điểm A(2; 1) và có đỉnh I(1; –1). Tính giá trị biểu thức T = a3 + b2 – 2c.
Câu 4:
Cho tam giác ABC có A(1; 2), B (–3; –1), và C (3; –4). Tìm điều kiện của tham số m để điểm M\(\left( {m;\frac{{m - 5}}{3}} \right)\) nằm bên trong tam giác ABC.
Câu 5:
Chứng minh với mọi tam giác ABC ta có:
cos2A + cos2B + cos2C = –1 – 4cosA.cosB.cosC.
Câu 6:
Cho hình thang cân ABCD (AD // BC). Biết AB = 12cm, AC = 16cm, BC = 20 cm. Chứng minh 4 điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
về câu hỏi!