Câu hỏi:

13/07/2024 29,812 Lưu

Cho tam giác ABC nhọn nội tiếp (O). Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK. Gọi M và N lần lượt là trung điểm của BC và AC. Chứng minh: MN DF và M là tâm đường tròn ngoại tiếp tam giác DEF.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC nhọn nội tiếp (O). Kẻ đường cao AD của tam giác  (ảnh 1)

Xét ADFC có: \(\widehat {ADC} = \widehat {AFC} = 90^\circ \)(Vì AD BC và CF AK)

Suy ra: ADFC nội tiếp vì 2 góc cùng nhìn AC dưới 1 góc 90° không đổi.

\(\widehat {DFA} = \widehat {DCA}\)(cùng chắn cung AD) hay \(\widehat {DFA} = \widehat {BCA}\)

\(\widehat {BKA} = \widehat {BCA}\)(góc nội tiếp)

Suy ra: \(\widehat {DFA} = \widehat {BKA}\)

Mà 2 góc \(\widehat {DFA};\widehat {BKA}\)ở vị trí đồng bị nên DF // BK

Mà BK AB nên DF AB

Mặt khác MN // AB (MN là đường trung bình của tam giác ABC)

Suy ra: MN DF (đpcm).

Lại có: MN DF

EM DF

AK là đường kính, BC là đây cung (1)

AK BC hay DM DF (2)

Từ (1) và (2) suy ra: M là tâm đường tròn ngoại tiếp tam giác DEF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - \tan \frac{\pi }{4}}}{{1 + \tan \alpha .\tan \frac{\pi }{4}}} = \frac{{2 - 1}}{{2 + 1}} = \frac{1}{3}\).

Lời giải

Tính được: 270° = \(\frac{{270}}{{180}}\pi = \frac{3}{2}\pi = \frac{3}{4}.2\pi \)

Vậy đu quay được góc 270° khi nó quay được \(\frac{3}{4}\) vòng

Ta có: đu quay quay được 1 vòng trong \(\frac{1}{3}\) phút

Vậy đu quay đu được \(\frac{3}{4}\) vòng trong: \(\frac{3}{4}.\frac{1}{3} = \frac{1}{4}\) phút.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP