Câu hỏi:

25/02/2024 15,848

Thời gian truy cập Internet mỗi buổi tối của một số học sinh được cho trong bảng sau:

Thời gian (phút)

[9,5; 12,5)

[12,5; 15,5)

[15,5; 18,5)

[18,5; 21,5)

[21,5; 24,5)

Số học sinh

3

12

15

24

2

Trung vị của mẫu số liệu ghép nhóm trên là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cỡ mẫu là n = 3 + 12 + 15 + 24 + 2 = 56.

Gọi x1, …, x56 là thời gian vào internet của 56 học sinh và giả sử dãy này được sắp xếp theo thứ tự tăng dần.

Ta có x1, x2, x3 Î [9,5; 12,5); x4, x5, ..., x15 Î [12,5; 15,5); x16, x17, ..., x30 Î [15,5; 18,5); x31, x32, ..., x54 Î [18,5; 21,5); x55, x56 Î [21,5; 24,5).

Khi đó, trung vị là  12x28+x29. Do 2 giá trị x28, x29 thuộc nhóm [15,5; 18,5) nên nhóm này chứa trung vị.

Do đó, trung vị của mẫu số liệu đã cho là:

 Me=15,5+5623+121518,515,5=18,1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Ta có: n = 42.

Nên tứ phân vị thứ nhất của mẫu số liệu trên là Q1 = x11.

Mà x11 Î [20; 40).

Vậy nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là nhóm [20; 40).

Lời giải

Đáp án đúng là: D

Do số lần gặp sự cố là số nguyên nên ta hiệu chỉnh lại như sau:

Số lần gặp sự cố

[0,5; 2,5)

[2,5; 4,5)

[4,5; 6,5)

[6,5; 8,5)

[8,5; 10,5)

Số xe

17

33

25

20

5

Gọi x1, x2, …, x100 là mẫu số liệu được xếp theo thứ tự không giảm.

Ta có x1, …, x17 Î [0,5; 2,5); x18, …, x50 Î [2,5; 4,5); x51, …, x75 Î [4,5; 6,5); x76, …, x95 Î [6,5; 8,5); x96, …, x100 Î [8,5; 10,5).

Tứ phân vị thứ nhất của dãy số liệu x1, x2, …, x100 là 12x25+x26. Do đó x25 và x26 thuộc nhóm [2,5; 4,5) nên tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là Q1=2,5+1.100417334,52,5=197662,98

 

 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP