Câu hỏi:

12/07/2024 18,466

Cho tam giác ABC vuông tại A (AB <AC), M là trung điểm của BC. Kẻ ME vuông góc AB (E thuộc AB), kẻ MF vuông góc AC (F thuộc AC ).

a) Tứ giác AEMF là hình gì? Vì sao?

b) Chứng minh EF = 12BC

c) Gọi K là chân đường vuông góc kẻ từ A đến BC. Chứng minh rằng tứ giác EKMF là hình thang cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A (AB <AC), M là trung điểm của BC. Kẻ ME vuông góc AB (ảnh 1)

a. Tứ giác AEFM có 3 góc vuông A^,E^,F^ nên AEFM là hình chữ nhật

b. ΔABC là tam giác vuông tại A, có AM là đường trung tuyến nên AM = MC = MB

ΔCMA là tam giác cân tại M (do MC = MA) nên MF là đường cao cũng là đường trung tuyến 

F là trung điểm AC (1)

ΔBMA là tam giác cân tại M (do MA = MB) nên ME là đường cao cũng là đường trung tuyến 
 E là trung điểm AB (2)

Từ (1) và (2) suy ra: EF là đường trung bình của ΔABC

EF = 12BC (đpcm)

c, EF là đường trung bình của ΔABC EF // BC

Tứ giác EKMF là hình thang

ΔAKC vuông tại K có KF là trung tuyến ứng với cạnh huyền

KF = FA mà FA = ME (do AEMF là hình chữ nhật)

KF = ME

Hình thang EKMF là hình thang cân (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ điểm A ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC đến (O) (B, C là các tiếp điểm) (ảnh 1)

a. Vì AB, AC là tiếp tuyến của (O)
AO BC = H

b. Ta có: OE OB

OE // AB vì AB là tiếp tuyến của (O)

OB AB

 CAO^=OAB^=AOE^

ΔOAE cân tại E

c.Ta có : AB,AC là tiếp tuyến của (O)

OB AB mà BCAB = H

OH.OA = OB2 = R2

Tương tự QM, QN là tiếp tuyến của (O)

Gọi QO ∩ MN = D

OD.OQ = OM2 = R2 vì OM QM

OH.OA = OD.OQ

 OHOD=OQOA

ΔODA ΔOHQ(c.g.c)

ADO^=QHO^ADO^=90°

AD OQ

Mà MN OQ = D
A, M, D, N thẳng hàng

Lời giải

Xét tam giác ABC có: cosB^=AB2+BC2AC22.AB.BC=1116

Xét tam giác ABM có: cosB^=AB2+BM2AM22.AB.BM=1116

 1116=62+42AM22.6.4

 AM=19

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay