Câu hỏi:

12/07/2024 4,937 Lưu

Cho chóp S.ABCD có đáy hình bình hành tâm O. Lấy N, M lần lượt thuộc SA, SB sao cho BM=14BS,SN=34SA. Tìm giao tuyến của:

a) (OMN) và (SAB).

b) (OMN) và (SAD).

c) (OMN) và (SBC).

d) (OMN) và (SCD).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho chóp S.ABCD có đáy hình bình hành tâm O. Lấy N, M lần lượt thuộc SA, SB sao cho (ảnh 1)

a) MOMN,MSABNOMN,NSAB

Nên: (OMN) ∩ (SAB) = MN

b) Ta có: SMSB=SNSA=34 nên MN // AB

Kẻ đường thẳng qua O và song song với AB cắt AD, BC lần lượt tại G, H

G, H (OMN)

Khi đó: (OMN) ∩ (SAD) = GN

c) MOMN,MSBCHOMN,HSBC

Nên (OMN) ∩ (SBC) = MH

d) Gọi giao điểm của MH và SC là I; giao điểm của NG và SD là J

Ta có: IOMN,ISCDJOMN,JSCD

Nên (OMN) ∩ (SCD) = IJ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(P) đi qua A(-1; 0) nên: 0 = a – b + c 

c = b - a (1)

(P) đi qua đỉnh B(1; 2) nên:

2 = a + b + c

Vậy T = a + b + c = 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP