Quảng cáo
Trả lời:
Bất đẳng thức cần chứng minh tương đương: .
⇔ (a2 + b2 + 2)(ab + 1) ≥ 2(a2b2 + a2 + b2 + 1)
⇔ a3b + a2 + ab3 + b2 + 2ab + 2 ≥ 2a2b2 + 2a2 + 2b2 + 2
⇔ a3b + ab3 + 2ab ≥ 2a2b2 + a2 + b2
⇔ ab(a2 + b2 – 2ab) – (a2 + b2 – 2ab) ≥ 0
⇔ (a2 + b2 – 2ab)(ab – 1) ≥ 0
⇔ (a – b)2(ab – 1) ≥ 0
Vì ab ≥ 1 nên ab – 1 ≥ 0
Suy ra: (a – b)2(ab – 1) ≥ 0
Vậy điều này luôn đúng
Do đó ta có đpcm.
Vậy (dấu “=” xảy ra khi a = b hoặc ab = 1).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đường thẳng song song trục Ox có phương trình y = c khác 0 (c là hằng số) nên để đường thẳng có dạng y = ax + b song song với trục Ox thì a = 0 và b ≠ 0
Khi đó đường thẳng trở thành y = b và song song trục Ox.
Ví dụ: Cho đường thẳng d có phương trình (m - 2)x + (3m - 1)y = 6m – 2. Tìm các giá trị của tham số m để d song song với trục hoành.
Ta có: d: (m - 2)x + (3m - 1)y = 6m – 2
⇔ (3m - 1)y = -(m – 2)x + 6m - 2
Để d // Ox thì a = 0 và b ≠ 0, tức là:
Vậy m = 2 thì ta có phương trình d: y = 2 song song với trục hoành.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.