Cho các số nguyên dương x, y thỏa mãn (2x + 3y)2 + 5x + 5y + 1 là số chính phương. Chứng minh rằng x = y.
Cho các số nguyên dương x, y thỏa mãn (2x + 3y)2 + 5x + 5y + 1 là số chính phương. Chứng minh rằng x = y.
Quảng cáo
Trả lời:

Ta có: (2x + 3y)2 < (2x + 3y)2 + 5x + 5y + 1 < (2x + 3y + 2)2
Do đó để (2x + 3y)2 + 5x + 5y + 1 là số chính phương thì (2x + 3y)2 + 5x + 5y + 1 = (2x + 3y + 1)2
Khi đó: (2x + 3y)2 + 5x + 5y + 1 = (2x + 3y + 1)2
⇔ (2x + 3y)2 + 5x + 5y + 1 = [(2x + 3y) + 1)]2
⇔ (2x + 3y)2 + 5x + 5y + 1 = (2x + 3y)2 + 2(2x + 3y) + 1
⇔ (2x + 3y)2 + 5x + 5y + 1 = (2x + 3y)2 + 4x + 6y + 1
⇔ 5x + 5y = 4x + 6y
⇔ x = y
Vậy x = y.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đường thẳng song song trục Ox có phương trình y = c khác 0 (c là hằng số) nên để đường thẳng có dạng y = ax + b song song với trục Ox thì a = 0 và b ≠ 0
Khi đó đường thẳng trở thành y = b và song song trục Ox.
Ví dụ: Cho đường thẳng d có phương trình (m - 2)x + (3m - 1)y = 6m – 2. Tìm các giá trị của tham số m để d song song với trục hoành.
Ta có: d: (m - 2)x + (3m - 1)y = 6m – 2
⇔ (3m - 1)y = -(m – 2)x + 6m - 2
Để d // Ox thì a = 0 và b ≠ 0, tức là:
Vậy m = 2 thì ta có phương trình d: y = 2 song song với trục hoành.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.