Câu hỏi:

12/07/2024 1,087

Phân tích các đa thức sau thành nhân tử:

a) 2xy + 3z + 6y + xz;

b) a4 − 9a+ a2a4 − 9a3 + a2 − 9a;

c) 3x2 + 5y − 3xy + (−5x);

d) x2 − (a + b)x + ab;

e) 4x2 − 4xy + y2 −  9t2;

g) x3 – 3x2y + 3xy– y3 – z3

h) x− y2 + 8x + 6y + 7.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Cách 1.

Ta có 2xy + 3z + 6y + xz = (2xy + xz) + (3z + 6y)

= x(2y + z) + 3(z + 2y)

= (z + 2y)(x + 3).

Cách 2.

Ta có 2xy + 3z + 6y + xz = (2xy + 6y) + (3z + xz)

= 2y(x + 3) + z(3 + x)

= (z + 2y)(x + 3).

b) Biến đổi được a4 − 9a+ a2 - 9a = (a – 9)a3 + a(a – 9) = (a – 9).a.(a2 + 1)

c) Biến đổi được 3x2 + 5y - 3xy + (-5x) = (x - y)(3x - 5).

d) Biến đổi được x- (a + b)x + ab = (x- a)(x - b).

e) Ta có 4x2 – 4xy + y2 – 9t2 

= (2x − y)2 − (3t)2

= (2x – y – 3t )(2x – y + 3t).

g) Ta có x3 − 3x2y + 3xy2 − y3 − z3

= (x − y)− z3

= (x - y - z)(x2 + y2 + z2- 2xy + xz - yz).

h) Ta có x2 − y2 + 8x + 6y + 7

= (x2 + 8x + 16) - (y2 - 6y + 9)

= (x + 4)2 − (y − 3)2

=(x – y + 7)(x + y + l).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường thẳng song song trục Ox có phương trình y = c khác 0 (c là hằng số) nên để đường thẳng có dạng y = ax + b song song với trục Ox thì a = 0 và b ≠ 0

Khi đó đường thẳng trở thành y = b và song song trục Ox.

Ví dụ: Cho đường thẳng d có phương trình (m - 2)x + (3m - 1)y = 6m – 2. Tìm các giá trị của tham số m để d song song với trục hoành.

Ta có: d: (m - 2)x + (3m - 1)y = 6m – 2

⇔ (3m - 1)y = -(m – 2)x + 6m - 2

Để d // Ox thì a = 0 và b ≠ 0, tức là:

m2=06m20m=2

Vậy m = 2 thì ta có phương trình d: y = 2 song song với trục hoành.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay