Câu hỏi:
13/07/2024 1,030Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa (một sản phẩm mới của công ty) cần thuê xe để chở trên 140 người và trên 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B. Trong đó loại xe A có 10 chiếc, loại xe B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu, loại B giá 3 triệu. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất. Biết rằng xe A chỉ chở tối đa 20 người và 0,6 tấn hàng. Xe B chở tối đa 10 người và 1,5 tấn hàng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi x là số xe loại A được thuê, y là số xe loại B được thuê. (x ≥ 0, y ≥ 0)
Do loại xe A có 10 chiếc, loại xe B có 9 chiếc nên x ≤ 10, y ≤ 9.
Do xe A chỉ chở tối đa 20 người và 0,6 tấn hàng, xe B chở tối đa 10 người và 1,5 tấn hàng mà cần thuê xe để chở trên 140 người và trên 9 tấn hàng nên:
Khi đó ta có hệ bất phương trình của x và y như sau:
Biểu diễn miền nghiệm của hệ bất phương trình trên hệ trục tọa độ Oxy:
- Biểu diễn miền nghiệm D1 của bất phương trình x ≥ 0.
+ Đường thẳng x = 0 là trục Oy.
Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy (kể cả bờ Oy) nằm bên phải trục Oy.
* Tương tự ta biểu diễn các miền nghiệm:
- Miền nghiệm D2 của bất phương trình y ≥ 0: là nửa mặt phẳng bờ Ox (kể cả bờ Ox) nẳm bên trên trục Ox.
- Miền nghiệm D3 của bất phương trình x ≤ 10: là nửa mặt phẳng bờ d1 (kể cả bờ d1: x = 10) chứa điểm O.
- Miền nghiệm D4 của bất phương trình y ≤ 9: là nửa mặt phẳng bờ d2 (kể cả bờ d2: y = 9) chứa điểm O.
- Miền nghiệm D5 của bất phương trình 2x + y ≥ 14:
+ Vẽ đường thẳng d3: 2x + y = 14.
+ Xét điểm O(0; 0): thay x = 0, y = 0 vào bất phương trình ta có 2. 0 + 0 = 0 ≥ 14 là mệnh đề sai nên điểm O(0; 0) không thỏa mãn bất phương trình 2x + y ≥ 14.
Miền nghiệm D5 của bất phương trình 2x + y ≥ 14 là nửa mặt phẳng bờ d3 (kể cả bờ d3) không chứa điểm O.
- Tương tự miền nghiệm D6 của bất phương trình 2x + 5y ≥ 30 là nửa mặt phẳng bờ d4 (kể cả bờ d4: 2x + 5y = 30) không chứa điểm O.
Ta có đồ thị:
Miền nghiệm của hệ bất phương trình là miền tứ giác ABCD:
A(2,5; 9), B(10; 9), C(10; 2), D(5; 4)
Một chiếc xe loại A cho thuê với giá 4 triệu, loại B giá 3 triệu nên tổng số tiền thuê là:
F (x; y) = 4x + 3y.
Để chi phí vận chuyển là thấp nhất thì F (x; y) là nhỏ nhất.
Tại A(2,5; 9): F = 4. 2,5 + 3. 9 = 37;
Tại B(10; 9): F = 4. 10 + 3. 9 = 67;
Tại C(10; 2): F = 4. 10 + 3. 2 = 46;
Tại D(5; 4): F = 4. 5 + 3. 4 = 32;
Vậy F (x; y) đạt giá trị nhỏ nhất là 32 khi x = 5 và y = 4.
Vậy cần thuê 5 xe loại A và 4 xe loại B để số tiền thuê nhỏ nhất.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
1 chiếc đồng hồ đánh chuông, kể từ thời điểm 0 giờ thì sau mỗi giờ số tiếng chuông đánh đúng bằng số giờ mà đồng hồ chỉ tại thời điểm đánh chuông. hỏi một ngày đồng hồ đánh bao nhiêu tiếng chuông?
Câu 3:
Gọi m là giá trị lớn nhất của hàm sô y = 3 + 2sin2x trên đoạn . Giá trị m là bao nhiêu?
Câu 4:
Để đo chiều cao của một tòa nhà, bác Nam lấy hai điểm A và D trên mặt đất có khoảng cách AD = 10m cùng thẳng hàng với chân B của tòa nhà để đặt hai giác kế. Chân của giác kế có chiều cao 1,2m. Gọi C là đỉnh của tòa nhà và hai điểm A1 và D1, là đỉnh của hai giác kế cùng thẳng hàng với điểm B1 thuộc chiều cao BC của tòa nhà. Bác đo được các góc = 35°, = 40°. Hỏi chiều cao của tòa nhà là bao nhiêu?
Câu 6:
Một học sinh A lên kế hoạch tiết kiệm tiền để gửi đi làm từ thiện cho trẻ em vùng cao bằng cách gửi ngân hàng với lãi suất không đổi 0.7% / tháng. Ban đầu, học sinh A có 1 triệu gửi ngân hàng từ đầu tháng và sau đó đúng 1 tháng thì mỗi tháng em lại gửi thêm vào 100.000 đồng. Tiền lãi hàng tháng học sinh A không rút mà cùng với tiền góp thêm 100.000 mỗi tháng thành gốc của tháng tiếp theo. Hỏi sau 12 tháng học sinh A có bao nhiêu tiền để gửi đi làm từ thiện?
Câu 7:
Giá trị của chữ số 3 trong số nhỏ nhất có 6 chữ số khác nhau là:
A. 30000.
B. 3000.
C. 300.
D. 30.
về câu hỏi!