Câu hỏi:

13/07/2024 766

a) Tính giá trị của biểu thức $M = {\left( {3 + 2\sqrt 2 } \right)^{2019}} \cdot {\left( {3\sqrt 2 - 4} \right)^{2018}}$.

b) Tìm tất cả các giá trị thực của tham số $m$ để hàm số $y = \log \left( {{x^2} - 2mx + 4} \right)$ có tập xác định là $\mathbb{R}$.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có $3\sqrt 2 - 4 = \sqrt 2 \left( {3 - 2\sqrt 2 } \right) \Rightarrow M = {\left( {3 + 2\sqrt 2 } \right)^{2019}} \cdot {\left( {\sqrt 2 } \right)^{2018}} \cdot {\left( {3 - 2\sqrt 2 } \right)^{2018}}$.

Lại có $\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right) = {3^2} - {\left( {2\sqrt 2 } \right)^2} = 9 - 8 = 1$.

Khi đó, ${\left( {3 + 2\sqrt 2 } \right)^{2018}}.{\left( {3 - 2\sqrt 2 } \right)^{2018}} = {\left[ {\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right)} \right]^{2018}} = 1$.

Do vậy $M = \left( {3 + 2\sqrt 2 } \right) \cdot {2^{1009}}$.

b) Điều kiện xác định của hàm số: ${x^2} - 2mx + 4 > 0$.

Hàm số có tập xác định là $\mathbb{R}$ Û ${x^2} - 2mx + 4 > 0,\forall x \in \mathbb{R} \Leftrightarrow {m^2} - 4 < 0 \Leftrightarrow - 2 < m < 2.$

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

Lời giải

Đáp án C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP