Cho tứ diện $ABCD$ có tam giác $ABC$ cân tại $A$, tam giác $BCD$ cân tại $D$. Gọi $I$ là trung điểm cạnh $BC$.
a) Chứng minh rằng $BC \bot \left( {AID} \right)$.
b) Gọi $AH$ là đường cao của tam giác $AID$. Chứng minh rằng $AH \bot BD$.
Cho tứ diện $ABCD$ có tam giác $ABC$ cân tại $A$, tam giác $BCD$ cân tại $D$. Gọi $I$ là trung điểm cạnh $BC$.
a) Chứng minh rằng $BC \bot \left( {AID} \right)$.
b) Gọi $AH$ là đường cao của tam giác $AID$. Chứng minh rằng $AH \bot BD$.
Câu hỏi trong đề: Đề kiểm tra Giữa kì 2 Toán 11 CTST có đáp án !!
Quảng cáo
Trả lời:

a) Vì tam giác $ABC$ cân tại $A$ có $AI$ là trung tuyến nên $AI$ đồng thời là đường cao, do đó $AI \bot BC$. (1)
Vì tam giác $BCD$ cân tại $D$ có $DI$ là trung tuyến nên $DI$ đồng thời là đường cao, do đó $DI \bot BC$. (2)
Từ (1) và (2) suy ra $BC \bot \left( {AID} \right)$.
b) Vì $AH$ là đường cao của tam giác $AID$ nên $AH \bot ID$.
Lại có $BC \bot \left( {AID} \right)$ nên $BC \bot AH$.
Ta có $\left\{ \begin{gathered}
AH \bot ID \hfill \\
AH \bot BC \hfill \\
ID,\,BC \subset \left( {BCD} \right) \hfill \\
ID \cap BC = I \hfill \\
\end{gathered} \right. \Rightarrow AH \bot \left( {BCD} \right)$.
Từ đó suy ra $AH \bot BD$.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.