Câu hỏi:

05/04/2024 266 Lưu

Cho tứ diện $ABCD$ có tam giác $ABC$ cân tại $A$, tam giác $BCD$ cân tại $D$. Gọi $I$ là trung điểm cạnh $BC$.

a) Chứng minh rằng $BC \bot \left( {AID} \right)$.

b) Gọi $AH$ là đường cao của tam giác $AID$. Chứng minh rằng $AH \bot BD$.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ diện ABCD có tam giác ABC cân tại A (ảnh 1)

a) Vì tam giác $ABC$ cân tại $A$$AI$ là trung tuyến nên $AI$ đồng thời là đường cao, do đó $AI \bot BC$. (1)

Vì tam giác $BCD$ cân tại $D$$DI$ là trung tuyến nên $DI$ đồng thời là đường cao, do đó $DI \bot BC$. (2)

Từ (1) và (2) suy ra $BC \bot \left( {AID} \right)$.

b) Vì $AH$ là đường cao của tam giác $AID$ nên $AH \bot ID$.

Lại có $BC \bot \left( {AID} \right)$ nên $BC \bot AH$.

Ta có $\left\{ \begin{gathered}

AH \bot ID \hfill \\

AH \bot BC \hfill \\

ID,\,BC \subset \left( {BCD} \right) \hfill \\

ID \cap BC = I \hfill \\

\end{gathered} \right. \Rightarrow AH \bot \left( {BCD} \right)$.

Từ đó suy ra $AH \bot BD$.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

Lời giải

Đáp án C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP