Câu hỏi:
13/07/2024 5,728
Một vận động viên luyện tập chạy cự li 100 m đã ghi lại kết quả luyện tập như sau:
Tìm phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm này. Phương sai và độ lệch chuẩn cho biết điều gì?
Một vận động viên luyện tập chạy cự li 100 m đã ghi lại kết quả luyện tập như sau:

Tìm phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm này. Phương sai và độ lệch chuẩn cho biết điều gì?
Quảng cáo
Trả lời:
Chọn giá trị đại diện cho mẫu số liệu ta có:
Thời gian (giây) |
[10,2; 10,4) |
[10,4; 10,6) |
[10,6; 10,8) |
[10,8; 11) |
Giá trị đại diện |
10,3 |
10,5 |
10,7 |
10,9 |
Số vận động viên |
3 |
7 |
8 |
2 |
Tổng số vận động viên là: 3 + 7 + 8 + 2 = 20.
Thời gian chạy trung bình là: .
Phương sai của mẫu số liệu là
.
Độ lệch chuẩn của mẫu số liệu là: .
Dựa vào phương sai và độ lệch chuẩn ta có kết luận rằng mẫu số liệu kết quả luyện tập có tính đồng đều, dữ liệu có xu hướng gần giá trị trung bình và ít bị phân tán.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn giá trị đại diện cho mẫu số liệu ta có:
Thời gian (giây) |
[10; 10,3) |
[10,3; 10,6) |
[10,6; 10,9) |
[10,9; 11,2) |
Giá trị đại diện |
10,15 |
10,45 |
10,75 |
11,05 |
Số lần chạy của A |
2 |
10 |
5 |
3 |
Số lần chạy của B |
3 |
7 |
9 |
6 |
Thời gian chạy trung bình của A là:
.
Thời gian chạy trung bình của B là:
.
Phương sai và độ lệch chuẩn của A là
.
Suy ra .
Phương sai và độ lệch chuẩn của B là
.
Suy ra
Vận động viên A có độ lệch chuẩn nhỏ hơn so với vận động viên B. Điều này cho thấy thời gian chạy tập luyện của vận động viên A ít biến động hơn so với vận động viên B. Do đó vận động viên A có thành tích luyện tập ổn định hơn so với vận động viên B.
Lời giải
Chọn giá trị đại diện cho mẫu số liệu ta có:
Tuổi thọ (năm) |
[1,5; 2) |
[2; 2,5) |
[2,5; 3) |
[3; 3,5) |
[3,5; 4) |
Giá trị đại diện |
1,75 |
2,25 |
2,75 |
3,25 |
3,75 |
Số linh kiện của phân xưởng 1 |
4 |
9 |
13 |
8 |
6 |
Số linh kiện của phân xưởng 2 |
2 |
8 |
20 |
7 |
3 |
Tuổi thọ trung bình của các linh kiện của phân xưởng 1 là:
.
Tuổi thọ trung bình của các linh kiện của phân xưởng 2 là:
.
Phương sai và độ lệch chuẩn của các linh kiện của phân xưởng 1 là:
Suy ra .
Phương sai và độ lệch chuẩn của các linh kiện của phân xưởng 2 là:
.
Suy ra .
Đối với mẫu số liệu này thì phương sai và độ lệch chuẩn nhỏ nên độ phân tán của số liệu thấp. Do đó các giá trị của mẫu số liệu tập trung quanh giá trị trung bình.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.