Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
c)
Gọi (O) là đường tròn có hai dây AB, CD. Gọi OH, OK lần lượt là khoảng cách từ O đến AB, CD. Khi đó OH ⊥ AB tại H và OK ⊥ CD tại K.
Do đó, theo kết quả của câu a, ta có: H, K lần lượt là trung điểm của AB, CD.
Suy ra và
Mà AB = CD nên HB = KD. (1)
Xét ∆OHB vuông tại H, ta có: OB2 = OH2 + HB2 (định lí Pythagore).
Suy ra OH2 = OB2 – HB2 = R2 – HB2. (2)
Xét ∆OKD vuông tại H, ta có: OD2 = OK2 + KD2 (định lí Pythagore).
Suy ra OK2 = OD2 – KD2 = R2 – KD2. (3)
Từ (1), (2) và (3) suy ra OH2 = OK2, hay OH = OK.
Vậy hai dây bằng nhau thì cách đều tâm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hình 94 mô tả mảnh vải có dạng một phần tư hình vành khuyên, trong đó hình vành khuyên giới hạn bởi hai đường tròn cùng tâm và có bán kính lần lượt là 3 dm và 5 dm. Diện tích của mảnh vải đó bằng bao nhiêu decimét vuông (làm tròn kết quả đến hàng phần mười)?
Câu 3:
Mặt đĩa CD ở Hình 93 có dạng hình vành khuyên giới hạn bởi hai đường tròn có bán kính lần lượt là 1,5 cm và 6 cm. Hình vành khuyên đó có diện tích bằng bao nhiêu centimét vuông (làm tròn kết quả đến hàng đơn vị)?
Câu 4:
Hình 96 biểu diễn vùng biển được chiếu sáng bởi một hải đăng có dạng một hình quạt tròn với bán kính 18 dặm, cung AmB có số đo 245°.
a) Hãy tính diện tích vùng biển có thể nhìn thấy ánh sáng từ hải đăng theo đơn vị kilômét vuông (lấy 1 dặm = 1 609 m và làm tròn kết quả đến hàng đơn vị).
Câu 5:
Chứng minh trong một đường tròn:
a) Đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy;
Câu 6:
Cho hai đường tròn (I; r) và (K; R) tiếp xúc ngoài với nhau tại P với R ≠ r, đường thẳng a lần lượt tiếp xúc với (I; r) và (K; R) tại A và B, a cắt KI tại O. Đường thẳng qua P vuông góc với IK cắt đường thẳng a tại M. Chứng minh:
a)
Câu 7:
Cho hình vuông ABCD cạnh r và đường tròn (C; r). Giả sử M là một điểm nằm trên đường tròn (C; r) sao cho điểm M nằm trong hình vuông ABCD. Tiếp tuyến của đường tròn (C; r) tại tiếp điểm M cắt các đoạn thẳng AB, AD lần lượt tại N, P. Chứng minh:
a) Các đường thẳng NB, PD là các tiếp tuyến của đường tròn (C; r).
về câu hỏi!