Cho các mệnh đề sau:
1) Hai đường thẳng song song thì đồng phẳng.
2) Hai đường thẳng không có điểm chung thì chéo nhau.
3) Hai đường thẳng chéo nhau thì không có điểm chung.
4) Hai đường thẳng chéo nhau thì không đồng phẳng.
Có bao nhiêu mệnh đề đúng?
Cho các mệnh đề sau:
1) Hai đường thẳng song song thì đồng phẳng.
2) Hai đường thẳng không có điểm chung thì chéo nhau.
3) Hai đường thẳng chéo nhau thì không có điểm chung.
4) Hai đường thẳng chéo nhau thì không đồng phẳng.
Có bao nhiêu mệnh đề đúng?
Câu hỏi trong đề: Bộ 2 Đề kiểm tra Cuối kì 1 Toán 11 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Chọn C
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Gọi $\Delta $ là giao tuyến của $\left( P \right)$ và $\left( {BCD} \right)$. Khi đó $\Delta $ đi qua $G$ và song song với $CD$.
Gọi $H,K$ lần lượt là giao điểm của $\Delta $ với $BC$ và $BD$.
\[ \Rightarrow \left\{ {\begin{array}{*{20}{c}}
{H \in \left( P \right)} \\
{H \in BC \subset \left( {BCD} \right)}
\end{array}} \right. \Rightarrow H \in \left( P \right) \cap \left( {BCD} \right)(1)\]
\[ \Rightarrow \left\{ {\begin{array}{*{20}{c}}
{K \in \left( P \right)} \\
{K \in BD \subset \left( {BCD} \right)}
\end{array}} \right. \Rightarrow K \in \left( P \right) \cap \left( {BCD} \right)(2)\]
Từ \[\left( 1 \right),\left( 2 \right)\] suy ra giao tuyến của $\left( P \right)$ và $\left( {BCD} \right)$ là $HK$.
b) Vì $G$ là trọng tâm tam giác $BCD$ và $HK{\text{//}}CD$ nên $\frac{{CH}}{{CB}} = \frac{{MG}}{{MB}} = \frac{{DK}}{{DB}} = \frac{1}{3}$.
Giả sử $\left( P \right)$ cắt $\left( {ABC} \right)$ và $\left( {ABD} \right)$ các giao tuyến là $HI$ và $KJ$.
Ta có \[\left( P \right) \cap \left( {ABC} \right) = HI\], \[\left( P \right) \cap \left( {ABD} \right) = KJ\,\] mà \[AB\parallel \left( P \right)\] nên \[HI\parallel AB\parallel KJ\].
Theo định lí Thalès, ta có \[\frac{{BH}}{{HC}} = \frac{{BK}}{{KD}} = \frac{{BG}}{{GM}} = 2\] suy ra $\left\{ \begin{gathered}
\frac{{HI}}{{AB}} = \frac{{CH}}{{CB}} = \frac{1}{3} \hfill \\
\frac{{KJ}}{{AB}} = \frac{{DK}}{{DB}} = \frac{1}{3} \hfill \\
\end{gathered} \right. \Rightarrow HI = KJ$.
Vậy thiết diện của \[\left( P \right)\] và tứ diện \[ABCD\] là hình bình hành $HIJK$.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.