Đề kiểm tra Cuối kì 1 Toán 11 Kết nối tri thức có đáp án
54 người thi tuần này 4.6 0.9 K lượt thi 39 câu hỏi 90 phút
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Trên đường tròn lượng giác, gọi $M\left( {{x_0};{y_0}} \right)$ là điểm biểu diễn cho góc lượng giác có số đo $\alpha $. Mệnh đề nào đúng trong các mệnh đề sau?
Trên đường tròn lượng giác, gọi $M\left( {{x_0};{y_0}} \right)$ là điểm biểu diễn cho góc lượng giác có số đo $\alpha $. Mệnh đề nào đúng trong các mệnh đề sau?
Lời giải
Chọn A
Lời giải
Chọn D
Lời giải
Chọn D
Lời giải
Chọn A
Lời giải
Chọn D
Câu 6
Trong các dãy số $\left( {{u_n}} \right)$ cho bởi số hạng tổng quát ${u_n}$ sau, dãy số nào giảm?
Trong các dãy số $\left( {{u_n}} \right)$ cho bởi số hạng tổng quát ${u_n}$ sau, dãy số nào giảm?
Lời giải
Chọn C
Lời giải
Chọn C
Câu 8
Cho dãy số $\left( {{u_n}} \right)$, biết \[{u_n} = \frac{{2n + 1}}{{n + 2}}\]. Viết năm số hạng đầu của dãy số.
Cho dãy số $\left( {{u_n}} \right)$, biết \[{u_n} = \frac{{2n + 1}}{{n + 2}}\]. Viết năm số hạng đầu của dãy số.
Lời giải
Chọn B
Lời giải
Chọn B
Câu 10
Cho một cấp số cộng $\left( {{u_n}} \right)$ có ${u_1} = \frac{1}{3};{u_8} = 26$. Tìm công sai $d$.
Cho một cấp số cộng $\left( {{u_n}} \right)$ có ${u_1} = \frac{1}{3};{u_8} = 26$. Tìm công sai $d$.
Lời giải
Chọn A
Câu 11
Cho một cấp số cộng $\left( {{u_n}} \right)$ có ${u_1} = 5$ và tổng của 50 số hạng đầu bằng 5 150. Tìm công thức của số hạng tổng quát ${u_n}$.
Cho một cấp số cộng $\left( {{u_n}} \right)$ có ${u_1} = 5$ và tổng của 50 số hạng đầu bằng 5 150. Tìm công thức của số hạng tổng quát ${u_n}$.
Lời giải
Chọn A
Lời giải
Chọn C
Câu 13
Cho cấp số nhân $\left( {{u_n}} \right)$ có ${u_n} = 81$ và ${u_{n + 1}} = 9$. Mệnh đề nào sau đây đúng?
Cho cấp số nhân $\left( {{u_n}} \right)$ có ${u_n} = 81$ và ${u_{n + 1}} = 9$. Mệnh đề nào sau đây đúng?
Lời giải
Chọn A
Câu 14
Cho cấp số nhân $\frac{1}{2};\frac{1}{4};\frac{1}{8};...;\frac{1}{{4096}}$. Hỏi số $\frac{1}{{4096}}$ là số hạng thứ mấy trong cấp số nhân đã cho?
Cho cấp số nhân $\frac{1}{2};\frac{1}{4};\frac{1}{8};...;\frac{1}{{4096}}$. Hỏi số $\frac{1}{{4096}}$ là số hạng thứ mấy trong cấp số nhân đã cho?
Lời giải
Chọn B
Câu 15
Cho dãy số $\left( {{u_n}} \right)$ thỏa mãn $\left| {{u_n} - 2} \right| < \frac{1}{{{n^3}}}$ với mọi $n \in {\mathbb{N}^*}$. Khi đó
Cho dãy số $\left( {{u_n}} \right)$ thỏa mãn $\left| {{u_n} - 2} \right| < \frac{1}{{{n^3}}}$ với mọi $n \in {\mathbb{N}^*}$. Khi đó
Lời giải
Chọn D
Lời giải
Chọn A
Câu 17
$\mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt {4{n^2} + 1} - \sqrt {n + 2} }}{{2n - 3}}$ bằng
$\mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt {4{n^2} + 1} - \sqrt {n + 2} }}{{2n - 3}}$ bằng
Lời giải
Chọn C
Lời giải
Chọn D
Lời giải
Chọn A
Lời giải
Chọn B
Lời giải
Chọn C
Lời giải
Chọn D
Câu 23
Cho hai đường thẳng $a,b$ cắt nhau và không đi qua điểm $A$. Xác định nhiều nhất bao nhiêu mặt phẳng bởi $a,b$ và $A$?
Cho hai đường thẳng $a,b$ cắt nhau và không đi qua điểm $A$. Xác định nhiều nhất bao nhiêu mặt phẳng bởi $a,b$ và $A$?
Lời giải
Chọn C
Lời giải
Chọn B
Câu 25
Cho 5 điểm $A,B,C,D,E$ trong đó không có 4 điểm ở trên một mặt phẳng. Hỏi có bao nhiêu mặt phẳng tạo bởi 3 trong 5 điểm đã cho?
Cho 5 điểm $A,B,C,D,E$ trong đó không có 4 điểm ở trên một mặt phẳng. Hỏi có bao nhiêu mặt phẳng tạo bởi 3 trong 5 điểm đã cho?
Lời giải
Chọn A
Câu 26
Cho hình chóp $S.ABCD$. Gọi $I$ là trung điểm của $SD$, $J$ là điểm trên $SC$ và không trùng trung điểm $SC$. Giao tuyến của hai mặt phẳng $\left( {ABCD} \right)$ và $\left( {AIJ} \right)$ là
Cho hình chóp $S.ABCD$. Gọi $I$ là trung điểm của $SD$, $J$ là điểm trên $SC$ và không trùng trung điểm $SC$. Giao tuyến của hai mặt phẳng $\left( {ABCD} \right)$ và $\left( {AIJ} \right)$ là
Lời giải
Chọn D
Câu 27
Cho các mệnh đề sau:
1) Hai đường thẳng song song thì đồng phẳng.
2) Hai đường thẳng không có điểm chung thì chéo nhau.
3) Hai đường thẳng chéo nhau thì không có điểm chung.
4) Hai đường thẳng chéo nhau thì không đồng phẳng.
Có bao nhiêu mệnh đề đúng?
Cho các mệnh đề sau:
1) Hai đường thẳng song song thì đồng phẳng.
2) Hai đường thẳng không có điểm chung thì chéo nhau.
3) Hai đường thẳng chéo nhau thì không có điểm chung.
4) Hai đường thẳng chéo nhau thì không đồng phẳng.
Có bao nhiêu mệnh đề đúng?
Lời giải
Chọn C
Câu 28
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $\Delta $ là giao tuyến chung của hai mặt phẳng $\left( {SAD} \right)$ và $\left( {SBC} \right)$. Đường thẳng $\Delta $ song song với đường thẳng nào dưới đây?
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $\Delta $ là giao tuyến chung của hai mặt phẳng $\left( {SAD} \right)$ và $\left( {SBC} \right)$. Đường thẳng $\Delta $ song song với đường thẳng nào dưới đây?
Lời giải
Chọn B
Lời giải
Chọn A
Câu 30
Cho tứ diện $ABCD$. Gọi hai điểm $M,\,N$ lần lượt là trung điểm của các cạnh $AB,\,AC$. Đường thẳng $MN$ song song với mặt phẳng nào sau đây?
Cho tứ diện $ABCD$. Gọi hai điểm $M,\,N$ lần lượt là trung điểm của các cạnh $AB,\,AC$. Đường thẳng $MN$ song song với mặt phẳng nào sau đây?
Lời giải
Chọn D
Câu 31
Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Gọi $M,N$ lần lượt là trung điểm của $SA$ và $AB$. Khẳng định nào sau đây đúng?
Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Gọi $M,N$ lần lượt là trung điểm của $SA$ và $AB$. Khẳng định nào sau đây đúng?
Lời giải
Chọn A
Lời giải
Chọn A
Lời giải
Chọn A
Lời giải
Chọn D
Câu 35
Cho tam giác $ABC$ ở trong mặt phẳng $\left( \alpha \right)$ và phương $l$. Biết hình chiếu (theo phương $l$) của tam giác $ABC$ lên mặt phẳng $\left( P \right)$ là một đoạn thẳng. Khẳng định nào sau đây đúng?
Cho tam giác $ABC$ ở trong mặt phẳng $\left( \alpha \right)$ và phương $l$. Biết hình chiếu (theo phương $l$) của tam giác $ABC$ lên mặt phẳng $\left( P \right)$ là một đoạn thẳng. Khẳng định nào sau đây đúng?
Lời giải
Chọn C
Câu 36
Cho cấp số nhân $\left( {{u_n}} \right)$ biết ${u_1} = 12;\frac{{{u_3}}}{{{u_8}}} = 243$. Tìm ${u_9}$.
Cho cấp số nhân $\left( {{u_n}} \right)$ biết ${u_1} = 12;\frac{{{u_3}}}{{{u_8}}} = 243$. Tìm ${u_9}$.
Lời giải
Gọi $q$ là công bội của cấp số nhân.
Ta có $\frac{{{u_3}}}{{{u_8}}} = \frac{{{u_1}{q^2}}}{{{u_1}{q^7}}} = 243 \Leftrightarrow q = \frac{1}{3}$.
Có ${u_9} = {u_1}{q^8}$$ = 12 \cdot {\left( {\frac{1}{3}} \right)^8} = \frac{4}{{2187}}$.
Câu 37
Tính giới hạn $\mathop {\lim }\limits_{x \to 1} \frac{{2\sqrt {x + 3} + x - 5}}{{x - {x^2}}}$.
Tính giới hạn $\mathop {\lim }\limits_{x \to 1} \frac{{2\sqrt {x + 3} + x - 5}}{{x - {x^2}}}$.
Lời giải
$\mathop {\lim }\limits_{x \to 1} \frac{{2\sqrt {x + 3} + x - 5}}{{x - {x^2}}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left[ {2\sqrt {x + 3} + \left( {x - 5} \right)} \right]\left[ {2\sqrt {x + 3} - \left( {x - 5} \right)} \right]}}{{\left( {x - {x^2}} \right)\left( {2\sqrt {x + 3} - \left( {x - 5} \right)} \right)}}$
$ = \mathop {\lim }\limits_{x \to 1} \frac{{ - {x^2} + 14x - 13}}{{ - x\left( {x - 1} \right)\left( {2\sqrt {x + 3} - \left( {x - 5} \right)} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{ - \left( {x - 1} \right)\left( {x - 13} \right)}}{{ - x\left( {x - 1} \right)\left( {2\sqrt {x + 3} - \left( {x - 5} \right)} \right)}}$
$ = \mathop {\lim }\limits_{x \to 1} \frac{{ - \left( {x - 13} \right)}}{{ - x\left( {2\sqrt {x + 3} - \left( {x - 5} \right)} \right)}} = - \frac{3}{2}$.
Câu 38
Cho tứ diện \[ABCD\] có \[G\] là trọng tâm của tam giác \[BCD\]. Gọi \[\left( P \right)\] là mặt phẳng qua \[G\] song song với \[AB\,\] và $CD$.
a) Tìm giao tuyến của \[\left( P \right)\] và \[\left( {BCD} \right)\].
b) Chứng minh thiết diện của tứ diện \[ABCD\] cắt bởi \[\left( P \right)\] là hình bình hành.
Cho tứ diện \[ABCD\] có \[G\] là trọng tâm của tam giác \[BCD\]. Gọi \[\left( P \right)\] là mặt phẳng qua \[G\] song song với \[AB\,\] và $CD$.
a) Tìm giao tuyến của \[\left( P \right)\] và \[\left( {BCD} \right)\].
b) Chứng minh thiết diện của tứ diện \[ABCD\] cắt bởi \[\left( P \right)\] là hình bình hành.
Lời giải

a) Gọi $\Delta $ là giao tuyến của $\left( P \right)$ và $\left( {BCD} \right)$. Khi đó $\Delta $ đi qua $G$ và song song với $CD$.
Gọi $H,K$ lần lượt là giao điểm của $\Delta $ với $BC$ và $BD$.
\[ \Rightarrow \left\{ {\begin{array}{*{20}{c}}
{H \in \left( P \right)} \\
{H \in BC \subset \left( {BCD} \right)}
\end{array}} \right. \Rightarrow H \in \left( P \right) \cap \left( {BCD} \right)(1)\]
\[ \Rightarrow \left\{ {\begin{array}{*{20}{c}}
{K \in \left( P \right)} \\
{K \in BD \subset \left( {BCD} \right)}
\end{array}} \right. \Rightarrow K \in \left( P \right) \cap \left( {BCD} \right)(2)\]
Từ \[\left( 1 \right),\left( 2 \right)\] suy ra giao tuyến của $\left( P \right)$ và $\left( {BCD} \right)$ là $HK$.
b) Vì $G$ là trọng tâm tam giác $BCD$ và $HK{\text{//}}CD$ nên $\frac{{CH}}{{CB}} = \frac{{MG}}{{MB}} = \frac{{DK}}{{DB}} = \frac{1}{3}$.
Giả sử $\left( P \right)$ cắt $\left( {ABC} \right)$ và $\left( {ABD} \right)$ các giao tuyến là $HI$ và $KJ$.
Ta có \[\left( P \right) \cap \left( {ABC} \right) = HI\], \[\left( P \right) \cap \left( {ABD} \right) = KJ\,\] mà \[AB\parallel \left( P \right)\] nên \[HI\parallel AB\parallel KJ\].
Theo định lí Thalès, ta có \[\frac{{BH}}{{HC}} = \frac{{BK}}{{KD}} = \frac{{BG}}{{GM}} = 2\] suy ra $\left\{ \begin{gathered}
\frac{{HI}}{{AB}} = \frac{{CH}}{{CB}} = \frac{1}{3} \hfill \\
\frac{{KJ}}{{AB}} = \frac{{DK}}{{DB}} = \frac{1}{3} \hfill \\
\end{gathered} \right. \Rightarrow HI = KJ$.
Vậy thiết diện của \[\left( P \right)\] và tứ diện \[ABCD\] là hình bình hành $HIJK$.
Câu 39
Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác $ABC$ được gọi là tam giác trung bình của tam giác $ABC$. Ta xây dựng dãy các tam giác ${A_1}{B_1}{C_1};{A_2}{B_2}{C_2};{A_3}{B_3}{C_3};...$ sao cho ${A_1}{B_1}{C_1}$ là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương $n \geqslant 2$, tam giác ${A_n}{B_n}{C_n}$ là tam giác trung bình của tam giác ${A_{n - 1}}{B_{n - 1}}{C_{n - 1}}$. Với mỗi số nguyên dương $n$, kí hiệu ${S_n}$ tương ứng là diện tích hình tròn ngoại tiếp tam giác ${A_n}{B_n}{C_n}$. Tính tổng $S = {S_1} + {S_2} + ... + {S_n} + ...$.
Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác $ABC$ được gọi là tam giác trung bình của tam giác $ABC$. Ta xây dựng dãy các tam giác ${A_1}{B_1}{C_1};{A_2}{B_2}{C_2};{A_3}{B_3}{C_3};...$ sao cho ${A_1}{B_1}{C_1}$ là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương $n \geqslant 2$, tam giác ${A_n}{B_n}{C_n}$ là tam giác trung bình của tam giác ${A_{n - 1}}{B_{n - 1}}{C_{n - 1}}$. Với mỗi số nguyên dương $n$, kí hiệu ${S_n}$ tương ứng là diện tích hình tròn ngoại tiếp tam giác ${A_n}{B_n}{C_n}$. Tính tổng $S = {S_1} + {S_2} + ... + {S_n} + ...$.
Lời giải
Vì dãy các tam giác ${A_1}{B_1}{C_1};{A_2}{B_2}{C_2};{A_3}{B_3}{C_3};...$ là các tam giác đều nên bán kính đường tròn ngoại tiếp các tam giác bằng cạnh $ \times \frac{{\sqrt 3 }}{3}$.
Với $n = 1$ thì tam giác đều ${A_1}{B_1}{C_1}$ có cạnh bằng 3 nên bán kính đường tròn ngoại tiếp tam giác đều ${A_1}{B_1}{C_1}$ là ${R_1} = 3 \cdot \frac{{\sqrt 3 }}{3} = \sqrt 3 $. Do đó ${S_1} = \pi {\left( {\sqrt 3 } \right)^2} = 3\pi $.
Với $n = 2$ thì tam giác đều ${A_2}{B_2}{C_2}$ có cạnh bằng $\frac{3}{2}$ nên bán kính đường tròn ngoại tiếp tam giác đều ${A_2}{B_2}{C_2}$ là ${R_2} = \frac{3}{2} \cdot \frac{{\sqrt 3 }}{3} = \frac{{\sqrt 3 }}{2}$. Do đó ${S_2} = \pi {\left( {\frac{{\sqrt 3 }}{2}} \right)^2} = 3\pi \cdot \frac{1}{4}$.
Với $n = 3$ thì tam giác đều ${A_3}{B_3}{C_3}$ có cạnh bằng $\frac{3}{4}$ nên bán kính đường tròn ngoại tiếp tam giác đều ${A_3}{B_3}{C_3}$ là ${R_3} = \frac{3}{4} \cdot \frac{{\sqrt 3 }}{3} = \frac{{\sqrt 3 }}{4}$. Do đó ${S_3} = \pi {\left( {\frac{{\sqrt 3 }}{4}} \right)^2} = 3\pi {\left( {\frac{1}{4}} \right)^2}$.
Như vậy tam giác ${A_n}{B_n}{C_n}$ có cạnh $3 \cdot {\left( {\frac{1}{2}} \right)^{n - 1}}$ và bán kính đường tròn ngoại tiếp tam giác đều ${A_n}{B_n}{C_n}$ là \[{R_n} = 3 \cdot {\left( {\frac{1}{2}} \right)^{n - 1}} \cdot \frac{{\sqrt 3 }}{3} = \sqrt 3 .{\left( {\frac{1}{2}} \right)^{n - 1}}\]. Do đó ${S_n} = \pi {\left( {\sqrt 3 .{{\left( {\frac{1}{2}} \right)}^{n - 1}}} \right)^2} = 3\pi {\left( {\frac{1}{4}} \right)^{n - 1}}$.
Khi đó $S = {S_1} + {S_2} + ... + {S_n} + ...$\[ = 3\pi + 3\pi \cdot \frac{1}{4} + 3\pi \cdot {\left( {\frac{1}{4}} \right)^2} + ... + 3\pi \cdot {\left( {\frac{1}{4}} \right)^{n - 1}} + ...\] là tổng cấp số nhân lùi vô hạn với ${u_1} = 3\pi ;q = \frac{1}{4}$.
Vậy $S = \frac{{{u_1}}}{{1 - q}} = \frac{{3\pi }}{{1 - \frac{1}{4}}} = 4\pi $.
186 Đánh giá
50%
40%
0%
0%
0%