Câu hỏi:
17/04/2024 103Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác $ABC$ được gọi là tam giác trung bình của tam giác $ABC$. Ta xây dựng dãy các tam giác ${A_1}{B_1}{C_1};{A_2}{B_2}{C_2};{A_3}{B_3}{C_3};...$ sao cho ${A_1}{B_1}{C_1}$ là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương $n \geqslant 2$, tam giác ${A_n}{B_n}{C_n}$ là tam giác trung bình của tam giác ${A_{n - 1}}{B_{n - 1}}{C_{n - 1}}$. Với mỗi số nguyên dương $n$, kí hiệu ${S_n}$ tương ứng là diện tích hình tròn ngoại tiếp tam giác ${A_n}{B_n}{C_n}$. Tính tổng $S = {S_1} + {S_2} + ... + {S_n} + ...$.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Vì dãy các tam giác ${A_1}{B_1}{C_1};{A_2}{B_2}{C_2};{A_3}{B_3}{C_3};...$ là các tam giác đều nên bán kính đường tròn ngoại tiếp các tam giác bằng cạnh $ \times \frac{{\sqrt 3 }}{3}$.
Với $n = 1$ thì tam giác đều ${A_1}{B_1}{C_1}$ có cạnh bằng 3 nên bán kính đường tròn ngoại tiếp tam giác đều ${A_1}{B_1}{C_1}$ là ${R_1} = 3 \cdot \frac{{\sqrt 3 }}{3} = \sqrt 3 $. Do đó ${S_1} = \pi {\left( {\sqrt 3 } \right)^2} = 3\pi $.
Với $n = 2$ thì tam giác đều ${A_2}{B_2}{C_2}$ có cạnh bằng $\frac{3}{2}$ nên bán kính đường tròn ngoại tiếp tam giác đều ${A_2}{B_2}{C_2}$ là ${R_2} = \frac{3}{2} \cdot \frac{{\sqrt 3 }}{3} = \frac{{\sqrt 3 }}{2}$. Do đó ${S_2} = \pi {\left( {\frac{{\sqrt 3 }}{2}} \right)^2} = 3\pi \cdot \frac{1}{4}$.
Với $n = 3$ thì tam giác đều ${A_3}{B_3}{C_3}$ có cạnh bằng $\frac{3}{4}$ nên bán kính đường tròn ngoại tiếp tam giác đều ${A_3}{B_3}{C_3}$ là ${R_3} = \frac{3}{4} \cdot \frac{{\sqrt 3 }}{3} = \frac{{\sqrt 3 }}{4}$. Do đó ${S_3} = \pi {\left( {\frac{{\sqrt 3 }}{4}} \right)^2} = 3\pi {\left( {\frac{1}{4}} \right)^2}$.
Như vậy tam giác ${A_n}{B_n}{C_n}$ có cạnh $3 \cdot {\left( {\frac{1}{2}} \right)^{n - 1}}$ và bán kính đường tròn ngoại tiếp tam giác đều ${A_n}{B_n}{C_n}$ là \[{R_n} = 3 \cdot {\left( {\frac{1}{2}} \right)^{n - 1}} \cdot \frac{{\sqrt 3 }}{3} = \sqrt 3 .{\left( {\frac{1}{2}} \right)^{n - 1}}\]. Do đó ${S_n} = \pi {\left( {\sqrt 3 .{{\left( {\frac{1}{2}} \right)}^{n - 1}}} \right)^2} = 3\pi {\left( {\frac{1}{4}} \right)^{n - 1}}$.
Khi đó $S = {S_1} + {S_2} + ... + {S_n} + ...$\[ = 3\pi + 3\pi \cdot \frac{1}{4} + 3\pi \cdot {\left( {\frac{1}{4}} \right)^2} + ... + 3\pi \cdot {\left( {\frac{1}{4}} \right)^{n - 1}} + ...\] là tổng cấp số nhân lùi vô hạn với ${u_1} = 3\pi ;q = \frac{1}{4}$.
Vậy $S = \frac{{{u_1}}}{{1 - q}} = \frac{{3\pi }}{{1 - \frac{1}{4}}} = 4\pi $.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trên đường tròn lượng giác, gọi $M\left( {{x_0};{y_0}} \right)$ là điểm biểu diễn cho góc lượng giác có số đo $\alpha $. Mệnh đề nào đúng trong các mệnh đề sau?
Câu 2:
Cho tứ diện \[ABCD\] có \[G\] là trọng tâm của tam giác \[BCD\]. Gọi \[\left( P \right)\] là mặt phẳng qua \[G\] song song với \[AB\,\] và $CD$.
a) Tìm giao tuyến của \[\left( P \right)\] và \[\left( {BCD} \right)\].
b) Chứng minh thiết diện của tứ diện \[ABCD\] cắt bởi \[\left( P \right)\] là hình bình hành.
Câu 3:
Cho các mệnh đề sau:
1) Hai đường thẳng song song thì đồng phẳng.
2) Hai đường thẳng không có điểm chung thì chéo nhau.
3) Hai đường thẳng chéo nhau thì không có điểm chung.
4) Hai đường thẳng chéo nhau thì không đồng phẳng.
Có bao nhiêu mệnh đề đúng?
Câu 4:
Tìm giới hạn \[\mathop {\lim }\limits_{x \to {1^ + }} \frac{{4x - 3}}{{x - 1}}\].
Câu 7:
Cho dãy số $ - 1;1; - 1;1; - 1;...$ Khẳng định nào sau đây là đúng?
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
93 Bài tập trắc nghiệm Lượng giác lớp 11 có lời giải (P1)
75 câu trắc nghiệm Giới hạn nâng cao (P1)
29 câu Trắc nghiệm Đại số và Giải tích 11 Bài 1 (Có đáp án): Hàm số lượng giác
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
15 câu Trắc nghiệm Đại cương về đường thẳng và mặt phẳng có đáp án (Nhận biết)
về câu hỏi!