Câu hỏi:
17/04/2024 4,453Cho tứ diện \[ABCD\] có \[G\] là trọng tâm của tam giác \[BCD\]. Gọi \[\left( P \right)\] là mặt phẳng qua \[G\] song song với \[AB\,\] và $CD$.
a) Tìm giao tuyến của \[\left( P \right)\] và \[\left( {BCD} \right)\].
b) Chứng minh thiết diện của tứ diện \[ABCD\] cắt bởi \[\left( P \right)\] là hình bình hành.
Câu hỏi trong đề: Bộ 2 Đề kiểm tra Cuối kì 1 Toán 11 Kết nối tri thức có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
a) Gọi $\Delta $ là giao tuyến của $\left( P \right)$ và $\left( {BCD} \right)$. Khi đó $\Delta $ đi qua $G$ và song song với $CD$.
Gọi $H,K$ lần lượt là giao điểm của $\Delta $ với $BC$ và $BD$.
\[ \Rightarrow \left\{ {\begin{array}{*{20}{c}}
{H \in \left( P \right)} \\
{H \in BC \subset \left( {BCD} \right)}
\end{array}} \right. \Rightarrow H \in \left( P \right) \cap \left( {BCD} \right)(1)\]
\[ \Rightarrow \left\{ {\begin{array}{*{20}{c}}
{K \in \left( P \right)} \\
{K \in BD \subset \left( {BCD} \right)}
\end{array}} \right. \Rightarrow K \in \left( P \right) \cap \left( {BCD} \right)(2)\]
Từ \[\left( 1 \right),\left( 2 \right)\] suy ra giao tuyến của $\left( P \right)$ và $\left( {BCD} \right)$ là $HK$.
b) Vì $G$ là trọng tâm tam giác $BCD$ và $HK{\text{//}}CD$ nên $\frac{{CH}}{{CB}} = \frac{{MG}}{{MB}} = \frac{{DK}}{{DB}} = \frac{1}{3}$.
Giả sử $\left( P \right)$ cắt $\left( {ABC} \right)$ và $\left( {ABD} \right)$ các giao tuyến là $HI$ và $KJ$.
Ta có \[\left( P \right) \cap \left( {ABC} \right) = HI\], \[\left( P \right) \cap \left( {ABD} \right) = KJ\,\] mà \[AB\parallel \left( P \right)\] nên \[HI\parallel AB\parallel KJ\].
Theo định lí Thalès, ta có \[\frac{{BH}}{{HC}} = \frac{{BK}}{{KD}} = \frac{{BG}}{{GM}} = 2\] suy ra $\left\{ \begin{gathered}
\frac{{HI}}{{AB}} = \frac{{CH}}{{CB}} = \frac{1}{3} \hfill \\
\frac{{KJ}}{{AB}} = \frac{{DK}}{{DB}} = \frac{1}{3} \hfill \\
\end{gathered} \right. \Rightarrow HI = KJ$.
Vậy thiết diện của \[\left( P \right)\] và tứ diện \[ABCD\] là hình bình hành $HIJK$.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trên đường tròn lượng giác, gọi $M\left( {{x_0};{y_0}} \right)$ là điểm biểu diễn cho góc lượng giác có số đo $\alpha $. Mệnh đề nào đúng trong các mệnh đề sau?
Câu 2:
Tìm giới hạn \[\mathop {\lim }\limits_{x \to {1^ + }} \frac{{4x - 3}}{{x - 1}}\].
Câu 3:
Cho các mệnh đề sau:
1) Hai đường thẳng song song thì đồng phẳng.
2) Hai đường thẳng không có điểm chung thì chéo nhau.
3) Hai đường thẳng chéo nhau thì không có điểm chung.
4) Hai đường thẳng chéo nhau thì không đồng phẳng.
Có bao nhiêu mệnh đề đúng?
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận