Câu hỏi:
17/04/2024 4,040Cho tứ diện \[ABCD\] có \[G\] là trọng tâm của tam giác \[BCD\]. Gọi \[\left( P \right)\] là mặt phẳng qua \[G\] song song với \[AB\,\] và $CD$.
a) Tìm giao tuyến của \[\left( P \right)\] và \[\left( {BCD} \right)\].
b) Chứng minh thiết diện của tứ diện \[ABCD\] cắt bởi \[\left( P \right)\] là hình bình hành.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
a) Gọi $\Delta $ là giao tuyến của $\left( P \right)$ và $\left( {BCD} \right)$. Khi đó $\Delta $ đi qua $G$ và song song với $CD$.
Gọi $H,K$ lần lượt là giao điểm của $\Delta $ với $BC$ và $BD$.
\[ \Rightarrow \left\{ {\begin{array}{*{20}{c}}
{H \in \left( P \right)} \\
{H \in BC \subset \left( {BCD} \right)}
\end{array}} \right. \Rightarrow H \in \left( P \right) \cap \left( {BCD} \right)(1)\]
\[ \Rightarrow \left\{ {\begin{array}{*{20}{c}}
{K \in \left( P \right)} \\
{K \in BD \subset \left( {BCD} \right)}
\end{array}} \right. \Rightarrow K \in \left( P \right) \cap \left( {BCD} \right)(2)\]
Từ \[\left( 1 \right),\left( 2 \right)\] suy ra giao tuyến của $\left( P \right)$ và $\left( {BCD} \right)$ là $HK$.
b) Vì $G$ là trọng tâm tam giác $BCD$ và $HK{\text{//}}CD$ nên $\frac{{CH}}{{CB}} = \frac{{MG}}{{MB}} = \frac{{DK}}{{DB}} = \frac{1}{3}$.
Giả sử $\left( P \right)$ cắt $\left( {ABC} \right)$ và $\left( {ABD} \right)$ các giao tuyến là $HI$ và $KJ$.
Ta có \[\left( P \right) \cap \left( {ABC} \right) = HI\], \[\left( P \right) \cap \left( {ABD} \right) = KJ\,\] mà \[AB\parallel \left( P \right)\] nên \[HI\parallel AB\parallel KJ\].
Theo định lí Thalès, ta có \[\frac{{BH}}{{HC}} = \frac{{BK}}{{KD}} = \frac{{BG}}{{GM}} = 2\] suy ra $\left\{ \begin{gathered}
\frac{{HI}}{{AB}} = \frac{{CH}}{{CB}} = \frac{1}{3} \hfill \\
\frac{{KJ}}{{AB}} = \frac{{DK}}{{DB}} = \frac{1}{3} \hfill \\
\end{gathered} \right. \Rightarrow HI = KJ$.
Vậy thiết diện của \[\left( P \right)\] và tứ diện \[ABCD\] là hình bình hành $HIJK$.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trên đường tròn lượng giác, gọi $M\left( {{x_0};{y_0}} \right)$ là điểm biểu diễn cho góc lượng giác có số đo $\alpha $. Mệnh đề nào đúng trong các mệnh đề sau?
Câu 2:
Tìm giới hạn \[\mathop {\lim }\limits_{x \to {1^ + }} \frac{{4x - 3}}{{x - 1}}\].
Câu 3:
Cho các mệnh đề sau:
1) Hai đường thẳng song song thì đồng phẳng.
2) Hai đường thẳng không có điểm chung thì chéo nhau.
3) Hai đường thẳng chéo nhau thì không có điểm chung.
4) Hai đường thẳng chéo nhau thì không đồng phẳng.
Có bao nhiêu mệnh đề đúng?
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
về câu hỏi!