CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 

Cho tứ diện ABCD có G là trọng tâm của tam (ảnh 1)

a) Gọi $\Delta $ là giao tuyến của $\left( P \right)$$\left( {BCD} \right)$. Khi đó $\Delta $ đi qua $G$ và song song với $CD$.

Gọi $H,K$ lần lượt là giao điểm của $\Delta $ với $BC$$BD$.

\[ \Rightarrow \left\{ {\begin{array}{*{20}{c}}

{H \in \left( P \right)} \\

{H \in BC \subset \left( {BCD} \right)}

\end{array}} \right. \Rightarrow H \in \left( P \right) \cap \left( {BCD} \right)(1)\]                                                                       

\[ \Rightarrow \left\{ {\begin{array}{*{20}{c}}

{K \in \left( P \right)} \\

{K \in BD \subset \left( {BCD} \right)}

\end{array}} \right. \Rightarrow K \in \left( P \right) \cap \left( {BCD} \right)(2)\]

Từ \[\left( 1 \right),\left( 2 \right)\] suy ra giao tuyến của $\left( P \right)$$\left( {BCD} \right)$$HK$.

b) Vì $G$ là trọng tâm tam giác $BCD$$HK{\text{//}}CD$ nên $\frac{{CH}}{{CB}} = \frac{{MG}}{{MB}} = \frac{{DK}}{{DB}} = \frac{1}{3}$.

Giả sử $\left( P \right)$ cắt $\left( {ABC} \right)$$\left( {ABD} \right)$ các giao tuyến là $HI$$KJ$.

Ta có \[\left( P \right) \cap \left( {ABC} \right) = HI\], \[\left( P \right) \cap \left( {ABD} \right) = KJ\,\]\[AB\parallel \left( P \right)\] nên \[HI\parallel AB\parallel KJ\].

Theo định lí Thalès, ta có \[\frac{{BH}}{{HC}} = \frac{{BK}}{{KD}} = \frac{{BG}}{{GM}} = 2\] suy ra $\left\{ \begin{gathered}

\frac{{HI}}{{AB}} = \frac{{CH}}{{CB}} = \frac{1}{3} \hfill \\

\frac{{KJ}}{{AB}} = \frac{{DK}}{{DB}} = \frac{1}{3} \hfill \\

\end{gathered} \right. \Rightarrow HI = KJ$.

Vậy thiết diện của \[\left( P \right)\] và tứ diện \[ABCD\] là hình bình hành $HIJK$.

Câu 2

Tìm giới hạn \[\mathop {\lim }\limits_{x \to {1^ + }} \frac{{4x - 3}}{{x - 1}}\].

Lời giải

Chọn A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Hàm số nào sau đây liên tục tại $x = 1$.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Qua phép chiếu song song biến ba đường thẳng song song thành

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho dãy số $ - 1;1; - 1;1; - 1;...$ Khẳng định nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay