Câu hỏi:

17/04/2024 304 Lưu

Tính giới hạn $\mathop {\lim }\limits_{x \to 1} \frac{{2\sqrt {x + 3} + x - 5}}{{x - {x^2}}}$.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

$\mathop {\lim }\limits_{x \to 1} \frac{{2\sqrt {x + 3} + x - 5}}{{x - {x^2}}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left[ {2\sqrt {x + 3} + \left( {x - 5} \right)} \right]\left[ {2\sqrt {x + 3} - \left( {x - 5} \right)} \right]}}{{\left( {x - {x^2}} \right)\left( {2\sqrt {x + 3} - \left( {x - 5} \right)} \right)}}$

$ = \mathop {\lim }\limits_{x \to 1} \frac{{ - {x^2} + 14x - 13}}{{ - x\left( {x - 1} \right)\left( {2\sqrt {x + 3} - \left( {x - 5} \right)} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{ - \left( {x - 1} \right)\left( {x - 13} \right)}}{{ - x\left( {x - 1} \right)\left( {2\sqrt {x + 3} - \left( {x - 5} \right)} \right)}}$

$ = \mathop {\lim }\limits_{x \to 1} \frac{{ - \left( {x - 13} \right)}}{{ - x\left( {2\sqrt {x + 3} - \left( {x - 5} \right)} \right)}} = - \frac{3}{2}$.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 

Cho tứ diện ABCD có G là trọng tâm của tam (ảnh 1)

a) Gọi $\Delta $ là giao tuyến của $\left( P \right)$$\left( {BCD} \right)$. Khi đó $\Delta $ đi qua $G$ và song song với $CD$.

Gọi $H,K$ lần lượt là giao điểm của $\Delta $ với $BC$$BD$.

\[ \Rightarrow \left\{ {\begin{array}{*{20}{c}}

{H \in \left( P \right)} \\

{H \in BC \subset \left( {BCD} \right)}

\end{array}} \right. \Rightarrow H \in \left( P \right) \cap \left( {BCD} \right)(1)\]                                                                       

\[ \Rightarrow \left\{ {\begin{array}{*{20}{c}}

{K \in \left( P \right)} \\

{K \in BD \subset \left( {BCD} \right)}

\end{array}} \right. \Rightarrow K \in \left( P \right) \cap \left( {BCD} \right)(2)\]

Từ \[\left( 1 \right),\left( 2 \right)\] suy ra giao tuyến của $\left( P \right)$$\left( {BCD} \right)$$HK$.

b) Vì $G$ là trọng tâm tam giác $BCD$$HK{\text{//}}CD$ nên $\frac{{CH}}{{CB}} = \frac{{MG}}{{MB}} = \frac{{DK}}{{DB}} = \frac{1}{3}$.

Giả sử $\left( P \right)$ cắt $\left( {ABC} \right)$$\left( {ABD} \right)$ các giao tuyến là $HI$$KJ$.

Ta có \[\left( P \right) \cap \left( {ABC} \right) = HI\], \[\left( P \right) \cap \left( {ABD} \right) = KJ\,\]\[AB\parallel \left( P \right)\] nên \[HI\parallel AB\parallel KJ\].

Theo định lí Thalès, ta có \[\frac{{BH}}{{HC}} = \frac{{BK}}{{KD}} = \frac{{BG}}{{GM}} = 2\] suy ra $\left\{ \begin{gathered}

\frac{{HI}}{{AB}} = \frac{{CH}}{{CB}} = \frac{1}{3} \hfill \\

\frac{{KJ}}{{AB}} = \frac{{DK}}{{DB}} = \frac{1}{3} \hfill \\

\end{gathered} \right. \Rightarrow HI = KJ$.

Vậy thiết diện của \[\left( P \right)\] và tứ diện \[ABCD\] là hình bình hành $HIJK$.

Câu 2

Lời giải

Chọn A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP