Câu hỏi:

17/04/2024 815 Lưu

Trong các mệnh đề sau, mệnh đề nào đúng?

A. Nếu hai mặt phẳng $\left( \alpha \right)$$\left( \beta \right)$ song song với nhau thì mọi đường thẳng nằm trong $\left( \alpha \right)$ đều song song với $\left( \beta \right)$.

B. Nếu hai mặt phẳng $\left( \alpha \right)$$\left( \beta \right)$ song song với nhau thì bất kì đường thẳng nào nằm trong $\left( \alpha \right)$ cũng song song với bất kì đường thẳng nào nằm trong $\left( \beta \right)$.

C. Nếu hai đường thẳng phân biệt $a$$b$ song song lần lượt nằm trong hai mặt phẳng $\left( \alpha \right)$$\left( \beta \right)$ phân biệt thì $\left( \alpha \right){\text{//}}\left( \beta \right)$.

D. Nếu đường thẳng $d$ song song với $\left( \alpha \right)$ thì nó song song với mọi đường thẳng nằm trong $\left( \alpha \right)$.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 

Cho tứ diện ABCD có G là trọng tâm của tam (ảnh 1)

a) Gọi $\Delta $ là giao tuyến của $\left( P \right)$$\left( {BCD} \right)$. Khi đó $\Delta $ đi qua $G$ và song song với $CD$.

Gọi $H,K$ lần lượt là giao điểm của $\Delta $ với $BC$$BD$.

\[ \Rightarrow \left\{ {\begin{array}{*{20}{c}}

{H \in \left( P \right)} \\

{H \in BC \subset \left( {BCD} \right)}

\end{array}} \right. \Rightarrow H \in \left( P \right) \cap \left( {BCD} \right)(1)\]                                                                       

\[ \Rightarrow \left\{ {\begin{array}{*{20}{c}}

{K \in \left( P \right)} \\

{K \in BD \subset \left( {BCD} \right)}

\end{array}} \right. \Rightarrow K \in \left( P \right) \cap \left( {BCD} \right)(2)\]

Từ \[\left( 1 \right),\left( 2 \right)\] suy ra giao tuyến của $\left( P \right)$$\left( {BCD} \right)$$HK$.

b) Vì $G$ là trọng tâm tam giác $BCD$$HK{\text{//}}CD$ nên $\frac{{CH}}{{CB}} = \frac{{MG}}{{MB}} = \frac{{DK}}{{DB}} = \frac{1}{3}$.

Giả sử $\left( P \right)$ cắt $\left( {ABC} \right)$$\left( {ABD} \right)$ các giao tuyến là $HI$$KJ$.

Ta có \[\left( P \right) \cap \left( {ABC} \right) = HI\], \[\left( P \right) \cap \left( {ABD} \right) = KJ\,\]\[AB\parallel \left( P \right)\] nên \[HI\parallel AB\parallel KJ\].

Theo định lí Thalès, ta có \[\frac{{BH}}{{HC}} = \frac{{BK}}{{KD}} = \frac{{BG}}{{GM}} = 2\] suy ra $\left\{ \begin{gathered}

\frac{{HI}}{{AB}} = \frac{{CH}}{{CB}} = \frac{1}{3} \hfill \\

\frac{{KJ}}{{AB}} = \frac{{DK}}{{DB}} = \frac{1}{3} \hfill \\

\end{gathered} \right. \Rightarrow HI = KJ$.

Vậy thiết diện của \[\left( P \right)\] và tứ diện \[ABCD\] là hình bình hành $HIJK$.

Câu 2

A. $\sin \alpha = {y_0}$.       

B. $\sin \alpha = {x_0}$.                 

C. $\sin \alpha = - {x_0}$.

D. $\sin \alpha = - {y_0}$.

Lời giải

Chọn A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. $ + \infty $.     
B. $2$.       
C. $ - \infty $.      
D. $ - 2$.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. $\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} - x + 1} + x - 2} \right) = - \frac{3}{2}$.       
B. $f\left( x \right) = \frac{{{x^2} - x - 2}}{{{x^2} - 1}}$.       
C. $f\left( x \right) = \frac{{{x^2} + x + 1}}{x}$. 

D. $f\left( x \right) = \frac{{x + 1}}{{x - 1}}$.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. ${u_1} = 1;{u_2} = \frac{3}{4};{u_3} = \frac{7}{5};{u_4} = \frac{3}{2};{u_5} = \frac{{11}}{7}$.   

B. ${u_1} = 1;{u_2} = \frac{5}{4};{u_3} = \frac{7}{5};{u_4} = \frac{3}{2};{u_5} = \frac{{11}}{7}$.

C. ${u_1} = 1;{u_2} = \frac{5}{4};{u_3} = \frac{8}{5};{u_4} = \frac{3}{2};{u_5} = \frac{{11}}{7}$.   

D. ${u_1} = 1;{u_2} = \frac{5}{4};{u_3} = \frac{7}{5};{u_4} = \frac{7}{2};{u_5} = \frac{{11}}{3}$.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Ba đường thẳng đôi một song song với nhau.

B. Một đường thẳng.

C. Hai đường thẳng song song.

D. Cả ba trường hợp trên.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP