Câu hỏi:
12/07/2024 65Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $G,N$ lần lượt là trọng tâm của tam giác $SAB,ABC$.
a) Tìm giao tuyến của hai mặt phẳng $\left( {SAC} \right)$ và $\left( {SBD} \right)$.
b) Chứng minh rằng $NG$ song song với mặt phẳng $\left( {SAC} \right)$.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Gọi $O$là giao điểm của $AC$ và $BD$.
Khi đó: $\left\{ \begin{gathered}
O \in AC \hfill \\
AC \subset (SAC) \hfill \\
\end{gathered} \right. \Rightarrow O \in (SAC)$.
$\left\{ \begin{gathered}
O \in BD \hfill \\
BD \subset (SBD) \hfill \\
\end{gathered} \right. \Rightarrow O \in (SBD)$.
$ \Rightarrow O \in \left( {SAC} \right) \cap (SBD)\,\,(1)$
Mặt khác $S \in \left( {SAC} \right) \cap (SB{\text{D}})\,\,\,\,(2)$
Từ (1) và (2) suy ra $\left( {SAC} \right) \cap (SB{\text{D}}) = SO$.
b) Gọi $I$ là trung điểm của $AB$.
Vì $G$ là trọng tâm tam giác $SAB$ nên $\frac{{IG}}{{GS}} = \frac{1}{2}$.
Vì $N$ là trọng tâm tam giác $ABC$nên $\frac{{IN}}{{NC}} = \frac{1}{2}$.
Xét $\Delta SIC$ có $\frac{{IG}}{{GS}} = \frac{{IN}}{{NC}} = \frac{1}{2} \Rightarrow GN{\text{//}}SC$ (Định lý đảo của định lí Thalès).
Khi đó ta có $\left\{ \begin{gathered}
GN{\text{//}}SC \hfill \\
SC \subset (SAC) \hfill \\
GN \not\subset (SAC) \hfill \\
\end{gathered} \right. \Rightarrow GN{\text{//}}(SAC)$.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho dãy số $\left( {{u_n}} \right)$, biết ${u_n} = \frac{{2{n^2} - 1}}{{{n^2} + 3}}$. Tìm số hạng ${u_5}$.
Câu 2:
Cho dãy số $\left( {{u_n}} \right)$ biết $\left\{ \begin{gathered}
{u_1} = 3 \hfill \\
{u_{n + 1}} = 3{u_n} \hfill \\
\end{gathered} \right.,\forall n \in {\mathbb{N}^*}$. Tìm số hạng tổng quát của dãy số $\left( {{u_n}} \right).$
Câu 4:
Dãy số \[ - 1;1; - 1;1; - 1; \cdots \]có số hạng tổng quát là công thức nào dưới đây?
Câu 5:
Cho hình chóp tứ giác $S.ABCD$ có đáy là hình bình hành tâm $O$. Điểm $M$ thuộc cạnh $SO$ ($M$ khác $S,O$). Trong các mặt phẳng sau, điểm $M$ thuộc mặt phẳng nào?
Câu 6:
$\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - 1}}{{x - 1}}$ bằng
Câu 7:
Trong hình sau, khi được kéo ra khỏi vị trí cân bằng ở điểm $O$ và buông tay, lực đàn hồi của lò xo khiến vật $A$ gắn ở đầu của lò xo dao động quanh $O$. Toạ độ $s\left( {{\text{cm}}} \right)$ của $A$ trên trục $Ox$ vào thời điểm $t$ (giây) sau khi buông tay được xác định bởi công thức $s = 10\sin \left( {10t + \frac{\pi }{2}} \right)$. Vào các thời điểm nào thì $s = - 5\sqrt 3 \left( {{\text{cm}}} \right)$?
về câu hỏi!