Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $G,N$ lần lượt là trọng tâm của tam giác $SAB,ABC$.
a) Tìm giao tuyến của hai mặt phẳng $\left( {SAC} \right)$ và $\left( {SBD} \right)$.
b) Chứng minh rằng $NG$ song song với mặt phẳng $\left( {SAC} \right)$.
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $G,N$ lần lượt là trọng tâm của tam giác $SAB,ABC$.
a) Tìm giao tuyến của hai mặt phẳng $\left( {SAC} \right)$ và $\left( {SBD} \right)$.
b) Chứng minh rằng $NG$ song song với mặt phẳng $\left( {SAC} \right)$.
Quảng cáo
Trả lời:
a) Gọi $O$là giao điểm của $AC$ và $BD$.
Khi đó: $\left\{ \begin{gathered}
O \in AC \hfill \\
AC \subset (SAC) \hfill \\
\end{gathered} \right. \Rightarrow O \in (SAC)$.
$\left\{ \begin{gathered}
O \in BD \hfill \\
BD \subset (SBD) \hfill \\
\end{gathered} \right. \Rightarrow O \in (SBD)$.
$ \Rightarrow O \in \left( {SAC} \right) \cap (SBD)\,\,(1)$
Mặt khác $S \in \left( {SAC} \right) \cap (SB{\text{D}})\,\,\,\,(2)$
Từ (1) và (2) suy ra $\left( {SAC} \right) \cap (SB{\text{D}}) = SO$.
b) Gọi $I$ là trung điểm của $AB$.
Vì $G$ là trọng tâm tam giác $SAB$ nên $\frac{{IG}}{{GS}} = \frac{1}{2}$.
Vì $N$ là trọng tâm tam giác $ABC$nên $\frac{{IN}}{{NC}} = \frac{1}{2}$.
Xét $\Delta SIC$ có $\frac{{IG}}{{GS}} = \frac{{IN}}{{NC}} = \frac{1}{2} \Rightarrow GN{\text{//}}SC$ (Định lý đảo của định lí Thalès).
Khi đó ta có $\left\{ \begin{gathered}
GN{\text{//}}SC \hfill \\
SC \subset (SAC) \hfill \\
GN \not\subset (SAC) \hfill \\
\end{gathered} \right. \Rightarrow GN{\text{//}}(SAC)$.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
D. \[{u_5} = \frac{{71}}{{39}}.\]
Lời giải
Chọn B
Lời giải
Theo đề ra ta có phương trình:
\[10\sin \left( {10t + \frac{\pi }{2}} \right) = - 5\sqrt 3 \]
\[ \Leftrightarrow \sin \left( {10t + \frac{\pi }{2}} \right) = \frac{{ - \sqrt 3 }}{2} = \sin \left( {\frac{{ - \pi }}{3}} \right)\]
\[ \Leftrightarrow \left[ \begin{gathered}
10t + \frac{\pi }{2} = \frac{{ - \pi }}{3} + k2\pi \hfill \\
10t + \frac{\pi }{2} = \frac{{4\pi }}{3} + k2\pi \hfill \\
\end{gathered} \right.,k \in \mathbb{Z} \Leftrightarrow \left[ \begin{gathered}
t = \frac{{ - \pi }}{{12}} + k\frac{\pi }{5} \hfill \\
t = \frac{\pi }{{12}} + k\frac{\pi }{5} \hfill \\
\end{gathered} \right.,k \in \mathbb{Z}\].
Vậy vào các thời điểm $t = \frac{{ - \pi }}{{12}} + k\frac{\pi }{5},\left( {k \geqslant 1,k \in \mathbb{Z}} \right)$ và $t = \frac{\pi }{{12}} + k\frac{\pi }{5}$$\left( {k \geqslant 0,k \in \mathbb{Z}} \right)$ thì $s = - 5\sqrt 3 $cm.
Câu 3
D. 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
B. $D = \mathbb{R}\backslash \left\{ 0 \right\}.$
D. $D = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}.$
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. ${u_n} = {n^{n - 1}}.$
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Qua 4 điểm phân biệt bất kì có duy nhất một mặt phẳng.
B. Qua 3 điểm phân biệt bất kì có duy nhất một mặt phẳng.
C. Qua 3 điểm không thẳng hàng có duy nhất một mặt phẳng.
D. Qua 2 điểm bất kì có duy nhất một mặt phẳng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.