Câu hỏi:

12/07/2024 1,186

Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ $t$ của năm $2017$ được cho bởi một hàm số $y = 4\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] + 10$ với $t \in \mathbb{Z}$$0 < t \leqslant 365$. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất?

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

$\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] \leqslant 1 \Rightarrow y = 4\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] + 10 \leqslant 14.$

Ngày có ánh sáng mặt trời nhiều nhất khi và chỉ khi

$y = 14 \Leftrightarrow \sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] = 1$

$ \Leftrightarrow \frac{\pi }{{178}}\left( {t - 60} \right) = \frac{\pi }{2} + k2\pi \Leftrightarrow t = 149 + 356k.$

Do $0 < t \leqslant 365 \Rightarrow 0 < 149 + 356k \leqslant 365$

$ \Leftrightarrow - \frac{{149}}{{356}} < k \leqslant \frac{{54}}{{89}}$.

$k \in \mathbb{Z}$ nên $k = 0$.

Với $k = 0 \Rightarrow t = 149$ rơi vào ngày 29 tháng 5 (vì ta đã biết tháng 1 và 3 có 31 ngày, tháng 4 có 30 ngày, riêng đối với năm 2017 thì không phải năm nhuận nên tháng 2 có 28 ngày hoặc dựa vào dữ kiện $0 < t \leqslant 365$ thì ta biết năm này tháng 2 chỉ có 28 ngày).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình bình hành và $N$ là trung điểm của cạnh $SA$.

a) Tìm giao điểm của $AC$ và mặt phẳng $(SBD)$.

b) Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng $(NBC)$. Thiết diện là hình gì?

 

Xem đáp án » 12/07/2024 4,783

Câu 2:

Trong mặt phẳng tọa độ $Oxy,$cho đường tròn lượng giác như hình vẽ bên dưới. Hỏi góc lượng giác nào sau đây có số đo là $90^\circ ?$

Trong mặt phẳng tọa độ Oxy cho đường tròn lượng giác (ảnh 1)

Xem đáp án » 25/04/2024 3,289

Câu 3:

Mệnh đề nào sau đây là sai?

Xem đáp án » 25/04/2024 2,635

Câu 4:

Trong mặt phẳng tọa độ $Oxy,$ trên đường tròn lượng giác gọi điểm $M$là điểm biểu diễn của góc $\alpha = \frac{\pi }{6}.$ Lấy điểm $N$ đối xứng với $M$ qua gốc tọa độ. Hỏi $N$ là điểm biểu diễn của góc có số đo bằng bao nhiêu?

Xem đáp án » 25/04/2024 2,610

Câu 5:

Khẳng định nào sau đây đúng?

Xem đáp án » 25/04/2024 1,180

Câu 6:

Cho $\alpha $ thuộc góc phần phần tư thứ nhất của đường tròn lượng giác. Khẳng định nào sau đây là đúng?

Xem đáp án » 25/04/2024 1,081

Bình luận


Bình luận
Vietjack official store