Câu hỏi:
13/07/2024 568Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt phẳng đáy bằng 60 độ. Tính khoảng cách từ A đến (SBC).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi O = AC ∩ BD ⇒ SO ⊥ (ABCD)
Khi đó OB là hình chiếu của SB trên (ABCD)
⇒
Gọi M là trung điểm BC, dựng OH ⊥ SM
Ta có: OM ⊥ BC (vì OM là đường trung bình trong tam giác ABC nên OM // AB, mà AB ⊥ BC)
Ta có: SO ⊥ (ABCD) nên SO ⊥ BC
Suy ra: BC ⊥ (SOM) ⇒ BC ⊥ OH
Mà OH ⊥ SM
Nên OH ⊥ (SBC) hay d(O, (SBC)) = OH
AO ∩ (SBC) = {C} nên
Hay d(A, (SBC)) = 2d(O, (SBC)) = 2OH (*)
ABCD là hình vuông cạnh a nên
Lại có: SO ⊥ (ABCD) nên SO ⊥ OB nên tam giác SOB vuông tại O
Suy ra: SO = OB.tan60° =
Xét trong tam giác SOM vuông tại O, có OH là đường cao
Áp dụng hệ thức lượng và Pytago trong tam giác vuông có: SO.OM = OH.SM
⇒
Từ (*) suy ra: d(A, (SBC)) = 2OH = .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho a, b, c là độ dài 3 cạnh của tam giác ABC. Biết b = 7; c = 5, cosA = . Tính độ dài của a.
Câu 3:
Cho hình thoi ABCD có cạnh a, có . Gọi O là giao điểm của 2 đường chéo. Tính
Câu 4:
Một đường tròn có bán kính 36m. Tìm độ dài của cung trên đường tròn đó có số đo là.
a)
b) 51°
c)
Câu 7:
Tìm số giao điểm của đồ thị hàm số y = x3 + 3x2 + 1 và đường thẳng y = 2x + 1.
về câu hỏi!