Câu hỏi:

12/07/2024 1,065 Lưu

Cho tứ diện ABCD có ABC là tam giác đều, BCD là tam giác vuông cân tại D, và AD hợp với (BCD) một góc 60°. Tính thể tích tứ diện ABCD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ diện ABCD có ABC là tam giác đều, BCD là tam giác vuông cân tại D, và AD hợp với (BCD) một góc 60°. Tính thể tích tứ diện ABCD. (ảnh 1)

Gọi H là trung điểm của BC

Vì tam giác BCD cân tại D nên DH vừa là trung tuyến vừa là đường cao.

Suy ra: DH vuông góc BC.

Ta có tam giác ABC đều nên AH (BCD)

Mà (ABC) (BCD) nên AH (BCD)

Ta có: AH HD

Suy ra: AH = AD.tan60° = a3

HD = AD.cot60° = a33

Ta lại có tam giác BCD vuông cân tại D nên BC = 2HD = 2a33

Khi đó thể tích VABCD = 13.AH.SBCD=13.a3.12.a33.2a33=a339.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

7π4=π4+2π

Nên góc có cùng điểm cuối với góc 7π4 là π4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP