Cho tứ diện ABCD có ABC là tam giác đều, BCD là tam giác vuông cân tại D, và AD hợp với (BCD) một góc 60°. Tính thể tích tứ diện ABCD.
Cho tứ diện ABCD có ABC là tam giác đều, BCD là tam giác vuông cân tại D, và AD hợp với (BCD) một góc 60°. Tính thể tích tứ diện ABCD.
Quảng cáo
Trả lời:
Gọi H là trung điểm của BC
Vì tam giác BCD cân tại D nên DH vừa là trung tuyến vừa là đường cao.
Suy ra: DH vuông góc BC.
Ta có tam giác ABC đều nên AH ⊥ (BCD)
Mà (ABC) ⊥ (BCD) nên AH ⊥ (BCD)
Ta có: AH ⊥ HD
Suy ra: AH = AD.tan60° =
HD = AD.cot60° =
Ta lại có tam giác BCD vuông cân tại D nên BC = 2HD =
Khi đó thể tích VABCD = .
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Nên góc có cùng điểm cuối với góc là .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

