Câu hỏi:

24/05/2024 2,048

Chọn ngẫu nhiên một số từ tập các số tự nhiên có năm chữ số đôi một khác nhau. Xác suất để số được chọn trong đó có mặt 2 chữ số chẵn và 3 chữ số lẻ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số tự nhiên có 5 chữ số có dạng abcde¯

Số phần tử của không gian mẫu là: n(Ω) = 9 . 9 . 8 . 7 . 6 = 27216 (để lập ra số có 5 chữ số đôi một khác nhau thì a có 9 cách chọn, b có 9 cách chọn, c có 8 cách chọn, d có 7 cách chọn, e có 6 cách chọn)

Trong {0; 1; 2; 3; …; 9} có 5 chữ số chẵn; 5 chữ số lẻ

Gọi E là tập hợp các số tự nhiên có 5 chữ số trong đó có 2 chữ số chẵn và 3 chữ số lẻ.

TH1: Có chữ số 0

Xếp chữ số 0 có 4 cách (vì a khác 0)

Chọn 1 chữ số chẵn từ 4 chữ số chẵn còn lại và sắp xếp có C41.4

Chọn 3 chữ số chẵn từ 5 chữ số lẻ và sắp xếp có C53.3!

Khi đó lập được: 4!.C41.4.C53.3!

TH2: Không có chữ số 0 có:

Chọn 2 chữ số chẵn từ 4 chữ số chẵn còn lại và sắp xếp có C42

Chọn 3 chữ số chẵn từ 5 chữ số lẻ có C53

Xếp 5 chữ số có 5!

Khi đó lập được: C42.C53.5!

Suy ra: n(E) = 4!.C41.4.C53.3!+C42.C53.5!=11040.

Vậy xác suất cần tìm là: PE=1104027216=230567.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

7π4=π4+2π

Nên góc có cùng điểm cuối với góc 7π4 là π4.

Lời giải

a) Sắp xếp 5 học sinh nữ có 5! cách

Khi đó, giữa các bạn nữ có 6 khoảng trống

Sắp xếp các bạn nam vào những khoảng trống đó có A65 cách.

Có A65.5!=86400 cách xếp nam nữ xen kẽ

b) Coi 5 học sinh nữ là một nhóm và 5 học sinh nam là một nhóm

 Mỗi nhóm có 5! cách sắp xếp

Sắp xếp hai nhóm với nhau có 2 cách

 Có 5!.5!.2 = 28800 cách sắp xếp những học sinh cùng giới thì ngồi cạnh nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay