Từ các số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và chia hết cho 2?
Từ các số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và chia hết cho 2?
Quảng cáo
Trả lời:
Số lập được chia hết cho 2 nên có 3 cách chọn chữ số hàng đơn vị (2, 4, 6).
Số lập được có 3 chữ số khác nhau nên có 5 cách chọn chữ số hàng trăm, 4 cách chọn chữ số hàng chục.
Vậy có thể lập được 5.4.3 = 60 (số) thỏa mãn yêu cầu đề bài.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Nên góc có cùng điểm cuối với góc là .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.