Câu hỏi:

19/08/2025 10,691 Lưu

Trong không gian \[Oxyz,\] cho điểm \(A\left( {2\,;\,\,1\,;\,\,1} \right)\), mặt phẳng \(\left( P \right):x - z - 1 = 0\) và đường thẳng \((d):\left\{ {\begin{array}{*{20}{l}}{x = 1 - t}\\{y = 2}\\{z =  - 2 + t}\end{array}} \right.\). Gọi \({d_1},\,\,{d_2}\) là các đường thẳng đi qua \(A\), năm trong \(\left( P \right)\) và đều có khoảng cách đến đường thẳng \(d\) bằng \(\sqrt 6 .\) Cosin của góc giữa \({d_1}\) và \({d_2}\) bằng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

Ta có: \(\overrightarrow {{n_P}}  = \left( {1\,;\,\,0\,;\,\, - 1} \right),\,\,\overrightarrow {{u_d}}  = \left( { - 1\,;\,\,0\,;\,\,1} \right)\)

\( \Rightarrow d \bot \left( P \right)\) và \(d \cap (P) = M\left( {0\,;\,\,2\,;\,\, - 1} \right)\)

\( \Rightarrow \overrightarrow {MA}  = (2; - 1;2) \Rightarrow MA = 3\)

Gọi \[H,\,\,K\] lần lượt là hình chiếu vuông góc của \(M\) lên \({d_1}\) và \({d_2},\) ta có

\(d\left( {{d_1}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_1}} \right) = MH,\,\,\,d\left( {{d_2}\,;\,\,d} \right) = d\left( {M\,;\,\,{d_2}} \right) = MK\)

\( \Rightarrow MH = MK = \sqrt 6 \) \( \Rightarrow \sin \widehat {MAK} = \sin \widehat {MAH} = \frac{{HM}}{{AM}} = \frac{{\sqrt 6 }}{3}\)

\( \Rightarrow \cos \left( {{d_1};\,\,{d_2}} \right) = \left| {\cos \left( {2 \cdot \widehat {MAH}} \right)} \right| = \left| {1 - 2{{\sin }^2}\widehat {MAH}} \right| = \left| {1 - \frac{4}{3}} \right| = \frac{1}{3}.\) Đáp án: \(\frac{1}{3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Chọn hệ trục tọa độ như hình vẽ (tâm của hình tròn)

Hai Elip lần lượt có phương trình là \(\left( {{E_1}} \right):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\) và \(\left( {{E_2}} \right):\frac{{{x^2}}}{1} + \frac{{{y^2}}}{4} = 1.\)

Tọa độ giao điểm của hai Elip trong góc phần tư thứ nhất là nghiệm phương trình \({x^2} + \frac{{1 - \frac{{{x^2}}}{4}}}{4} = 1 \Leftrightarrow {x^2} = \frac{4}{5} \Rightarrow x = \frac{{2\sqrt 5 }}{5}.\)

Diện tích hình phẳng cần tìm là:

\[S = \pi  \cdot {2^2} - \pi  \cdot 2 \cdot 1 - 8\int\limits_2^{\frac{{2\sqrt 5 }}{5}} {\left( {2\sqrt {1 - {x^2}}  - \sqrt {1 - \frac{{{x^2}}}{4}} } \right)} \,{\rm{d}}x \approx 3,7.\] Chọn C.

Lời giải

Ta có \( - 1 \le \sin \left[ {\frac{\pi }{{182}}\left( {t - 70} \right)} \right] \le 1\) nên \(16 - 4 \le 4\sin \left[ {\frac{\pi }{{182}}(t - 70)} \right] + 16 \le 16 + 4\)

\( \Leftrightarrow 12 \le 4\sin \left[ {\frac{\pi }{{182}}\left( {t - 70} \right)} \right] + 16 \le 20.{\rm{ }}\)

Do đó ngày có it ánh sáng mặt trời nhất khi

\[d\left( t \right) = 12 \Leftrightarrow 4\sin \left[ {\frac{\pi }{{182}}\left( {t - 70} \right)} \right] + 16 = 12 \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 70} \right)} \right] =  - 1\]

\[ \Leftrightarrow \frac{\pi }{{182}}\left( {t - 70} \right) =  - \frac{\pi }{2} + k2\pi  \Leftrightarrow t =  - 21 + 364k \Rightarrow t = 343.\] Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP