Câu hỏi:

21/06/2024 776 Lưu

Bất phương trình \(\left( {{x^3} - 9x} \right)\ln \left( {x + 5} \right) \le 0\) có bao nhiêu nghiệm nguyên?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện: \(x >  - 5.\)

Cho \(\left( {{x^3} - 9x} \right)\ln \left( {x + 5} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x^3} - 9x = 0}\\{\ln \left( {x + 5} \right) = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x =  - 3}\\{x = 0}\\{x = 3}\\{x =  - 4}\end{array}} \right.} \right.\).

Bảng xét dấu:

Media VietJack

Dựa vào bảng xét dấu ta thấy \(f\left( x \right) \le 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 4 \le x \le  - 3}\\{0 \le x \le 3}\end{array}} \right.\)

Vì  \(x \in \mathbb{Z}\) nên \[x \in \left\{ { - 4\,;\,\, - 3\,;\,\,0\,;\,\,1\,;\,\,2\,;\,\,3} \right\}\].

Vậy có 6 giá trị nguyên của \(x\) thỏa mãn bài toán. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lao động nước ta có nhiều kinh nghiệm trong sản xuất nông nghiệp chứ không phải công nghiệp. Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP