Câu hỏi:

21/06/2024 133 Lưu

Cho hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{{m^2}6 \ge 6 - x}\\{3x - 1 \le x + 5}\end{array}} \right.\). Tất cả các giá trị của tham số \(m\) để hệ bất phương trình đã cho có nghiệm duy nhất là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bất phương trình \({m^2}x \ge 6 - x \Leftrightarrow \left( {{m^2} + 1} \right)x \ge 6\)\( \Leftrightarrow x \ge \frac{6}{{{m^2} + 1}} \Rightarrow {s_1} = \left[ {\frac{6}{{{m^2} + 1}};\,\, + \infty } \right){\rm{. }}\)

Bất phương trình \(3x - 1 \le x + 5 \Leftrightarrow x \le 3 \Leftrightarrow {s_2} = \left( { - \infty \,;\,\,3} \right].\)

Để hệ bất phương trình có nghiệm duy nhất \( \Leftrightarrow {s_1} \cap {s_2}\) là tập hợp có đúng một phần tử

\( \Leftrightarrow \frac{6}{{{m^2} + 1}} = 3 \Leftrightarrow {m^2} = 1 \Leftrightarrow m =  \pm 1.\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lao động nước ta có nhiều kinh nghiệm trong sản xuất nông nghiệp chứ không phải công nghiệp. Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP