Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \(a,\) cạnh bên \[SA\] vuông góc với mă̆t phẳng đáy, \(SA = a\sqrt 2 .\) Gọi \[M,\,\,N\] lần lượt là hình chiếu vuông góc của điểm \(A\) trên các cạnh \[SB,\,\,SD.\] Góc giữa mặt phẳng \[\left( {AMN} \right)\] và đường thẳng \[SB\] bằng
Quảng cáo
Trả lời:
Ta có \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot AM\)
\( \Rightarrow AM \bot \left( {SBC} \right) \Rightarrow AM \bot SC.\)
Tương tự ta cũng có \(AN \bot SC \Rightarrow \left( {AMN} \right) \bot SC.\)
Gọi \(\varphi \) là góc giữa đường thẳng SB và \(\left( {AMN} \right)\)
Chuẩn hóa và chọn hệ trục tọa độ sao cho\(D\left( {1\,;\,\,0\,;\,\,0} \right),\,\,S\left( {0\,;\,\,0\,;\,\,\sqrt 2 } \right),\,\,C\left( {1\,;\,\,1\,;\,\,0} \right),\)\(A\left( {0\,;\,\,0\,;\,\,0} \right),\,\,\)\(B\left( {0\,;\,\,1\,;\,\,0} \right),\,\,\)\(\overrightarrow {SC} = \left( {1\,;\,\,1\,;\,\, - \sqrt 2 } \right),\,\,\overrightarrow {SB} = \left( {0\,;\,\,1\,;\,\, - \sqrt 2 } \right).\)
Do \(\left( {AMN} \right) \bot SC\) nên \(\left( {AMN} \right)\) có VTPT \(\overrightarrow {SC} .\)
Do đó \(\sin \varphi = \frac{{\left| 3 \right|}}{{2\sqrt 3 }} = \frac{{\sqrt 3 }}{2} \Rightarrow \varphi = 60^\circ {\rm{. }}\)Chọn D.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lao động nước ta có nhiều kinh nghiệm trong sản xuất nông nghiệp chứ không phải công nghiệp. Chọn B.
Lời giải
Câu thơ sử dụng biện pháp tu từ hoán dụ: dùng địa danh để chỉ người sống trên địa danh đó: Thôn Đoài - Thôn Đông → Cách biểu đạt tình cảm kín đáo, ý nhị. Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.