Câu hỏi:

21/06/2024 204 Lưu

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) đồng thời thỏa mãn \(f\left( 0 \right) > 0\) và \(\left[ {f\left( x \right) + 6x} \right]f\left( x \right) = 9{x^4} + 3{x^2} + 4\,,\,\,\forall x \in \mathbb{R}.\) Giá trị lớn nhất của hàm số \(y = f\left( {2{x^2} - 3x + 1} \right)\) trên đoạn \[\left[ {0\,;\,\,1} \right]\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Có \(\left[ {f\left( x \right) + 6x} \right]f\left( x \right) = 9{x^4} + 3{x^2} + 4 \Leftrightarrow {\left[ {f\left( x \right) + 3x} \right]^2} = {\left( {3{x^2} + 2} \right)^2}\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f\left( x \right) + 3x = 3{x^2} + 2}\\{f\left( x \right) + 3x =  - 3{x^2} - 2}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f\left( x \right) = 3{x^2} - 3x + 2}\\{f\left( x \right) =  - 3{x^2} - 3x - 2\,\,(L)}\end{array}} \right.} \right.\).

Đặt \(t = 2{x^2} - 3x + 1\), với \(x \in \left[ {0\,;\,\,1} \right]\) thì \(t \in \left[ { - \frac{1}{8};1} \right]\).

Xét hàm \(g(t) = f(t)\) trên \(\left[ { - \frac{1}{8};1} \right]\), có \(g'(t) = f'(t) = 0 \Leftrightarrow 6t - 3 = 0 \Leftrightarrow t = \frac{1}{2} \in \left[ { - \frac{1}{8};1} \right]\).

Có \(g\left( { - \frac{1}{8}} \right) = \frac{{155}}{{64}};\,\,g\left( {\frac{1}{2}} \right) = \frac{5}{4};\,\,g\left( 1 \right) = 2.\)

Suy ra, \({\max _{\left[ {0\,;\,\,1} \right]}}y = {\max _{\left[ { - \frac{1}{8}\,;\,\,1} \right]}}g\left( t \right) = \frac{{155}}{{64}}.\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lao động nước ta có nhiều kinh nghiệm trong sản xuất nông nghiệp chứ không phải công nghiệp. Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP