Cho các số phức \({z_1} = - 2 + i,{z_2} = 2 + i\) và số phức \(z\) thay đổi thỏa mãn \({\left| {z - {z_1}} \right|^2} + {\left| {z - {z_2}} \right|^2} = 16.\) Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \[\left| z \right|\]. Giá trị biểu thức \({M^2} - {m^2}\) bằng
Cho các số phức \({z_1} = - 2 + i,{z_2} = 2 + i\) và số phức \(z\) thay đổi thỏa mãn \({\left| {z - {z_1}} \right|^2} + {\left| {z - {z_2}} \right|^2} = 16.\) Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \[\left| z \right|\]. Giá trị biểu thức \({M^2} - {m^2}\) bằng
Quảng cáo
Trả lời:

Gọi \(M\) là điểm biểu diễn của \[z.\]
Gọi \(A\left( { - 2\,;\,\,1} \right),\,\,B\left( {2\,;\,\,1} \right).\) Gọi \(I\left( {0\,;\,\,1} \right)\) là trung điểm AB.
Ta có \({\left| {z - {z_1}} \right|^2} + {\left| {z - {z_2}} \right|^2} = 16 \Leftrightarrow M{A^2} + M{B^2} = 16\)
\(M{A^2} + M{B^2} = 2M{I^2} + \frac{{A{B^2}}}{2} = 16 \Rightarrow MI = 2\).
Suy ra tập hợp các điểm \(M\) là đường tròn tâm \(I\left( {0\,;\,\,1} \right)\) bán kính \(R = 2.\)
Ta lại có: \(\left| {IM - IO} \right| \le IM \le IM + IO \Leftrightarrow 1 \le OM \le 3.\)Do đó \({\left| z \right|_{\max }} = 3 \Leftrightarrow M = {M_2}\); \({\left| z \right|_{{\rm{min }}}} = 1 \Leftrightarrow M = {M_1}\)\( \Rightarrow {M^2} - {m^2} = 8.\)
Đáp án: 8.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lao động nước ta có nhiều kinh nghiệm trong sản xuất nông nghiệp chứ không phải công nghiệp. Chọn B.
Câu 2
Lời giải
Câu thơ sử dụng biện pháp tu từ hoán dụ: dùng địa danh để chỉ người sống trên địa danh đó: Thôn Đoài - Thôn Đông → Cách biểu đạt tình cảm kín đáo, ý nhị. Chọn C.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. 0 gam.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.