Cho hình chóp \[S.ABCD\] có đáy là hình vuông, mặt bên \(\left( {SAB} \right)\) là một tam giác đều nằm trong mặt phẳng vuông góc với mặt đáy \(\left( {ABCD} \right)\) và có diện tích bằng \(\frac{{27\sqrt 3 }}{4}.\) Một mặt phẳng đi qua trọng tâm tam giác SAB và song song với mặt đáy \(\left( {ABCD} \right)\) chia khối chóp \[S.ABCD\] thành hai phần. Thể tích \(V\) của phần chứa điểm \(S\) bằng
Cho hình chóp \[S.ABCD\] có đáy là hình vuông, mặt bên \(\left( {SAB} \right)\) là một tam giác đều nằm trong mặt phẳng vuông góc với mặt đáy \(\left( {ABCD} \right)\) và có diện tích bằng \(\frac{{27\sqrt 3 }}{4}.\) Một mặt phẳng đi qua trọng tâm tam giác SAB và song song với mặt đáy \(\left( {ABCD} \right)\) chia khối chóp \[S.ABCD\] thành hai phần. Thể tích \(V\) của phần chứa điểm \(S\) bằng
Quảng cáo
Trả lời:

Gọi \(H\) là trung điểm \(AB\). Do \(\Delta SAB\) đều và \(\left( {SAB} \right) \bot \left( {ABCD} \right)\) nên \(SH \bot \left( {ABCD} \right).\)
Ta có \({S_{SAB}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{27\sqrt 3 }}{4} \Rightarrow AB = 3\sqrt 3 \)
\( \Rightarrow SH = \frac{{AB\sqrt 3 }}{2} = \frac{{3\sqrt 3 \sqrt 3 }}{2} = \frac{9}{2}\)\( \Rightarrow {V_{S.ABCD}} = \frac{1}{3} \cdot {S_{ABCD}} \cdot SH = \frac{1}{3} \cdot A{B^2} \cdot SH = \frac{1}{3} \cdot {\left( {3\sqrt 3 } \right)^2} \cdot \frac{{{9^2}}}{2} = \frac{{81}}{2}\) (đvtt).
Gọi \(G\) là trọng tâm tam giác \[SAB,\] qua \(G\) kẻ đường thẳng song song với \[AB,\] cắt \[SA\] và \[SB\] lần lượt tại \[M,{\rm{ }}N.\]
Qua \(N\) kẻ đường thẳng song song với \[BC\] cắt \[SC\] tại \(P\), qua \(M\) kẻ đường thẳng song song với \[AD\] cắt \[SD\] tại \[Q.\]
Suy ra \(\left( {MNPQ} \right)\) là mặt phẳng đi qua \(G\) và song song với \(\left( {ABCD} \right)\).
Khi đó \(\frac{{SM}}{{SA}} = \frac{{SN}}{{SB}} = \frac{{SP}}{{SC}} = \frac{{SQ}}{{SD}} = \frac{{SG}}{{SH}} = \frac{2}{3}.\)
Ta có \(\frac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}} \cdot \frac{{SN}}{{SB}} \cdot \frac{{SP}}{{SC}} = {\left( {\frac{2}{3}} \right)^2} = \frac{8}{{27}}\)\( \Rightarrow {V_{S.MNP}} = \frac{8}{{27}} \cdot {V_{S.ABC}} = \frac{8}{{27}} \cdot \frac{1}{2}{V_{S.ABCD}} = \frac{4}{{27}}{V_{S.ABCD}}\)
\(\frac{{{V_{S.MPQ}}}}{{{V_{S.ACD}}}} = \frac{{SM}}{{SA}} \cdot \frac{{SP}}{{SC}} \cdot \frac{{SQ}}{{SD}} = {\left( {\frac{2}{3}} \right)^2} = \frac{8}{{27}} \Rightarrow {V_{S.MPQ}} = \frac{8}{{27}} \cdot {V_{S.ACD}} = \frac{8}{{27}} \cdot \frac{1}{2}{V_{S.ABCD}} = \frac{4}{{27}}{V_{S.ABCD}}\)
Vậy \({V_{S.MNPQ}} = {V_{S.MNP}} + {V_{S.MPQ}} = \frac{4}{{27}}{V_{S.ABCD}} + \frac{4}{{27}}{V_{S.ABCD}} = \frac{8}{{27}}{V_{S.ABCD}} = \frac{8}{{27}} \cdot \frac{{81}}{2} = 12\) (đvtt).
Đáp án: 12.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lao động nước ta có nhiều kinh nghiệm trong sản xuất nông nghiệp chứ không phải công nghiệp. Chọn B.
Câu 2
Lời giải
Câu thơ sử dụng biện pháp tu từ hoán dụ: dùng địa danh để chỉ người sống trên địa danh đó: Thôn Đoài - Thôn Đông → Cách biểu đạt tình cảm kín đáo, ý nhị. Chọn C.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. 0 gam.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.