Câu hỏi:
27/06/2024 261Gọi \(S\) là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau lập từ các chữ số \[0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7.\] Chọn ngẫu nhiên một số từ tập \[S.\] Xác suất để số được chọn có đúng 2 chữ số chẵn là
Quảng cáo
Trả lời:
Đặt \(X = \left\{ {0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7} \right\} \Rightarrow n\left( X \right) = 8\).
Gọi biến cố \({\rm{A}}\): "Số được chọn có đúng 2 chữ số chẵn".
Gọi số tự nhiên có 4 chữ số khác nhau lấy từ \(X\) có dạng: \(\overline {{a_1}{a_2}{a_3}{a_4}} \):
\({a_1} \in X\backslash \left\{ 0 \right\} \Rightarrow {a_1}\) có 7 cách chọn; \({a_2},\,\,{a_3},\,\,{a_4} \in X\backslash \left\{ {{a_1}} \right\} \Rightarrow {a_2},\,\,{a_3},\,\,{a_4}\) có \(A_7^3\) cách chọn.
Số phân tử không gian mẫu là: \(n(\Omega ) = 7.{\rm{A}}_7^3 = 1470\).
Tính số các được chọn có đúng 2 chữ số chẵn, kể cả chữ số 0 đứng đầu.
Chọn 2 chữ số chẵn trong bộ \[\left\{ {0\,;\,\,2\,;\,\,4\,;\,\,6} \right\}\] có \({\rm{C}}_4^2\) cách chọn.
Chọn 2 chữ số lẻ còn lại trong bộ \(\left\{ {1\,;\,\,3\,;\,\,5\,;\,\,7} \right\}\) có \(C_4^2\) cách chọn.
Sau khi chọn 4 chữ số trên có \[4!\] cách xếp vị trí.
Suy ra số các số được chọn có đúng hai chữ số chẵn, kể cả chữ số 0 đứng đầu là: \(C_4^2\,.\,C_4^2\,.\,4! = 864.\)
Tính số các số được chọn có đúng 2 chữ số chẵn trong đó chữ số 0 đứng đầu.
Chọn 1 chữ số chẵn trong bộ \[\left\{ {2\,;\,\,4\,;\,\,6} \right\}\] có 3 cách chọn.
Chọn 2 chữ số lẻ còn lại trong bộ \(\left\{ {1\,;\,\,3\,;\,\,5\,;\,\,7} \right\}\) có \(C_4^2\) cách chọn.
Sau khi chọn 3 chữ số trên có \[3!\] cách xếp vị trí.
Suy ra số các số được chọn có đúng hai chữ số chẵn trong đó chữ số 0 đứng đầu là: \[3\,.\,C_4^2\,.\,3! = 108.\]
Khi đó \({\rm{n}}({\rm{A}}) = 864 - 108 = 756\) (số).
Xác suất cần tìm là: \({\rm{P}}\left( {\rm{A}} \right) = \frac{{{\rm{n}}\left( {\rm{A}} \right)}}{{{\rm{n}}\left( \Omega \right)}} = \frac{{756}}{{1470}} = \frac{{18}}{{35}}\). Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\sin x = \frac{1}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{6} + 2k\pi }\\{x = \frac{{5\pi }}{6} + 2k\pi }\end{array}(k \in \mathbb{Z})} \right.\).
Vì \(x \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) nên \(x = \frac{\pi }{6} \Rightarrow S = \frac{\pi }{6}\). Chọn D.
Lời giải
Phía bắc khu vực Mỹ La-tinh tiếp giáp với Hoa Kỳ. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)