Câu hỏi:
27/06/2024 99Gọi \(S\) là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau lập từ các chữ số \[0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7.\] Chọn ngẫu nhiên một số từ tập \[S.\] Xác suất để số được chọn có đúng 2 chữ số chẵn là
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt \(X = \left\{ {0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7} \right\} \Rightarrow n\left( X \right) = 8\).
Gọi biến cố \({\rm{A}}\): "Số được chọn có đúng 2 chữ số chẵn".
Gọi số tự nhiên có 4 chữ số khác nhau lấy từ \(X\) có dạng: \(\overline {{a_1}{a_2}{a_3}{a_4}} \):
\({a_1} \in X\backslash \left\{ 0 \right\} \Rightarrow {a_1}\) có 7 cách chọn; \({a_2},\,\,{a_3},\,\,{a_4} \in X\backslash \left\{ {{a_1}} \right\} \Rightarrow {a_2},\,\,{a_3},\,\,{a_4}\) có \(A_7^3\) cách chọn.
Số phân tử không gian mẫu là: \(n(\Omega ) = 7.{\rm{A}}_7^3 = 1470\).
Tính số các được chọn có đúng 2 chữ số chẵn, kể cả chữ số 0 đứng đầu.
Chọn 2 chữ số chẵn trong bộ \[\left\{ {0\,;\,\,2\,;\,\,4\,;\,\,6} \right\}\] có \({\rm{C}}_4^2\) cách chọn.
Chọn 2 chữ số lẻ còn lại trong bộ \(\left\{ {1\,;\,\,3\,;\,\,5\,;\,\,7} \right\}\) có \(C_4^2\) cách chọn.
Sau khi chọn 4 chữ số trên có \[4!\] cách xếp vị trí.
Suy ra số các số được chọn có đúng hai chữ số chẵn, kể cả chữ số 0 đứng đầu là: \(C_4^2\,.\,C_4^2\,.\,4! = 864.\)
Tính số các số được chọn có đúng 2 chữ số chẵn trong đó chữ số 0 đứng đầu.
Chọn 1 chữ số chẵn trong bộ \[\left\{ {2\,;\,\,4\,;\,\,6} \right\}\] có 3 cách chọn.
Chọn 2 chữ số lẻ còn lại trong bộ \(\left\{ {1\,;\,\,3\,;\,\,5\,;\,\,7} \right\}\) có \(C_4^2\) cách chọn.
Sau khi chọn 3 chữ số trên có \[3!\] cách xếp vị trí.
Suy ra số các số được chọn có đúng hai chữ số chẵn trong đó chữ số 0 đứng đầu là: \[3\,.\,C_4^2\,.\,3! = 108.\]
Khi đó \({\rm{n}}({\rm{A}}) = 864 - 108 = 756\) (số).
Xác suất cần tìm là: \({\rm{P}}\left( {\rm{A}} \right) = \frac{{{\rm{n}}\left( {\rm{A}} \right)}}{{{\rm{n}}\left( \Omega \right)}} = \frac{{756}}{{1470}} = \frac{{18}}{{35}}\). Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tổng \(S\) của các nghiệm của phương trình \(\sin x = \frac{1}{2}\) trên đoạn \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) là
Câu 3:
Trung tâm A chứa tối đa mỗi phòng học là 200 em học sinh. Nếu một phòng học có x học sinh thì học phí cho mỗi học sinh là \({\left( {9 - \frac{x}{{40}}} \right)^2}\) (nghìn đồng). Một buổi học thu được số tiền học phí cao nhất là bao nhiêu nghìn đồng?
Câu 4:
Đọc đoạn trích sau đây và trả lời câu hỏi:
Rồi hóng mát thuở ngày trường,
Hoè lục đùn đùn tán rợp giương.
Thạch lựu hiên còn phun thức đỏ,
Hồng liên trì đã tiễn mùi hương.
Lao xao chợ cá làng ngư phủ,
Dắng dỏi cầm ve lầu tịch dương.
Dẽ có Ngu cầm đàn một tiếng,
Dân giàu đủ khắp đòi phương.
(Nguyễn Trãi, Cảnh ngày hè, Ngữ văn 10, tập 1, NXB Giáo dục)
Hiệu quả nghệ thuật của từ láy “lao xao”, “dắng dỏi” là gì?
Câu 6:
PHẦN 2: TƯ DUY ĐỊNH TÍNH
Lĩnh vực: Ngữ văn (50 câu – 60 phút)
Câu 7:
Cho biểu đồ:
TRANG TRẠI PHÂN THEO LĨNH VỰC HOẠT ĐỘNG NƯỚC TA NĂM 2011 VÀ 2021
(Nguồn: gso.gov.vn)
Biểu đồ trên thể hiện nội dung nào sau đây?
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!