Câu hỏi:
28/06/2024 451Có bao nhiêu giá trị nguyên của \[m \in \left( { - 10\,;\,\,10} \right)\] để hàm số \({{\rm{y}}^2}\; = {{\rm{m}}^2}{{\rm{x}}^4} - 2\left( {4\;{\rm{m}} - 1} \right){{\rm{x}}^2} + 1\) đồng biến trên khoảng \[\left( {1\,;\,\, + \infty } \right)\]?
Quảng cáo
Trả lời:
Khi \({\rm{m}} = 0\) thì \({\rm{y}} = 2{{\rm{x}}^2} + 1\) đồng biến trên \(\left( {0\,;\,\, + \infty } \right)\) nên đồng biến trên \[\left( {1\,;\,\, + \infty } \right).\]
Như vậy \({\rm{m}} = 0\) thỏa mãn yêu cầu bài toán.
Xét khi \(m \ne 0\) (lúc đó hệ số \({m^2} > 0\)): \(y' = 4{m^2}{x^3} - 4\left( {4m - 1} \right)x\,;\,\,y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{{x^2} = \frac{{4m - 1}}{{{m^2}}}}\end{array}} \right.\)
• Nếu \(\;\frac{{4m - 1}}{{{m^2}}} > 0\), tức là \(m > \frac{1}{4}\) thì \(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x_1} = 0}\\{{x_2} = \frac{{\sqrt {4m - 1} }}{m}}\\{{x_3} = - \frac{{\sqrt {4m - 1} }}{m}}\end{array}} \right.\).
Ta có bảng biến thiên:
Dựa vào bảng biến thiên, để hàm số đồng biến trên \[\left( {1\,;\,\, + \infty } \right)\] thì \(\frac{{\sqrt {4\;{\rm{m}} - 1} }}{{\;{\rm{m}}}} \le 1 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{\rm{m}} > \frac{1}{4}}\\{\sqrt {4\;{\rm{m}} - 1} \le {\rm{m}}}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m > \frac{1}{4}}\\{4m - 1 \le {m^2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m > \frac{1}{4}}\\{{m^2} - 4m + 1 \ge 0}\end{array}\left\{ \begin{array}{l}m > \frac{1}{4}\\\left[ \begin{array}{l}m \le 2 - \sqrt 3 \\m \ge 2 + \sqrt 3 \end{array} \right.\end{array} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\frac{1}{4} < m \le 2 - \sqrt 3 }\\{m \ge 2 + \sqrt 3 }\end{array}.} \right.} \right.} \right.\)
• Nếu \(\left\{ {\begin{array}{*{20}{l}}{m \le \frac{1}{4}}\\{m \ne 0}\end{array}} \right.\) thì \(y' = 0 \Leftrightarrow x = 0 \Rightarrow \) hàm số đồng biến trên \(\left( {0\,;\,\, + \infty } \right)\) nên đồng biến trên \[\left( {1\,;\,\, + \infty } \right).\]
Như vậy, hàm số đồng biến trên \[\left( {1\,;\,\, + \infty } \right)\] khi \(\left[ {\begin{array}{*{20}{l}}{{\rm{m}} \le 2 - \sqrt 3 }\\{\;{\rm{m}} \ge 2 + \sqrt 3 }\end{array}} \right.\).
Từ đó suy ra có 16 giá trị nguyên của \(m \in \left( { - 10\,;\,\,10} \right)\) thỏa mãn yêu cầu bài toán. Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Các chất tham gia phản ứng tráng gương là có nhóm –CHO, lưu ý fructose có nhóm ketone nhưng trong môi trường \[N{H_3}\] fructose bị chuyển thành glucose nên fructose cũng tham gia phản ứng tráng gương.
→ Các chất tham gia phản ứng tráng gương: glucose, aldehyde acetic, fructose.
Lưu ý: acetylene tham gia phản ứng với \[AgN{O_3}\]nhưng không phải phản ứng tráng gương.
Chọn C.
Lời giải
Ta có: \({\rm{f'}}({\rm{x}}) = 12{{\rm{t}}^2} - 2{{\rm{t}}^3},\,\,{\rm{x}} \in \left[ {0\,;\,\,6} \right]\).
Khảo sát hàm \({\rm{f'}}({\rm{x}})\).
Ta có \({\rm{f''}}(t) = 24t - 6{t^2}\,;\,\,{\rm{f''}}(t) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 0}\\{t = 4}\end{array}} \right..\)
Vậy tốc độ truyền lớn nhất sẽ lớn nhất vào ngày thứ 4. Đáp án: 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận