Câu hỏi:

28/06/2024 227 Lưu

Cho tứ diện đều \({\rm{ABCD}}\) cạnh \[a.\] Mặt phẳng \(\left( {\rm{P}} \right)\) chứa cạnh \(BC\) cắt cạnh \(AD\) tại \({\rm{E}}{\rm{.}}\) Biết góc giữa hai mặt phẳng \(\left( {\rm{P}} \right)\) và \(\left( {{\rm{BCD}}} \right)\) có số đo là \(\alpha \) thỏa mãn \(\tan \alpha  = \frac{{5\sqrt 2 }}{7}.\) Gọi thể tích của hai tứ diện \({\rm{ABCE}}\) và tứ diện \({\rm{BCDE}}\) lần lượt là \({{\rm{V}}_1}\) và \({{\rm{V}}_2}\). Tính tỉ số \(\frac{{{{\rm{V}}_1}}}{{\;{{\rm{V}}_2}}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi \[H,\,\,I\] lần lượt là hình chiếu vuông góc của \({\rm{A}},\,\,{\rm{E}}\) trên mặt phẳng (BCD).

Khi đó \({\rm{H}},\,\,{\rm{I}} \in {\rm{DM}}\) với \({\rm{M}}\) là trung điểm \({\rm{BC}}\).

Ta tính được \({\rm{AH}} = \frac{{{\rm{a}}\sqrt 6 }}{3},{\rm{DH}} = \frac{{{\rm{a}}\sqrt 3 }}{3},{\rm{MH}} = \frac{{{\rm{a}}\sqrt 3 }}{6}\).

Ta có \[\left( {\widehat {\left( {\rm{P}} \right),\,\,\left( {{\rm{BCD}}} \right)}} \right) = \widehat {{\rm{EMD}}} = \alpha \]\( \Rightarrow \tan \alpha  = \frac{{EI}}{{MI}} = \frac{{5\sqrt 2 }}{7}\).

Gọi \({\rm{DE}} = x \Rightarrow \frac{{{\rm{DE}}}}{{{\rm{AD}}}} = \frac{{{\rm{EI}}}}{{{\rm{AH}}}} = \frac{{{\rm{DI}}}}{{{\rm{DH}}}}\)

\( \Rightarrow {\rm{EI}} = \frac{{{\rm{ DE}} \cdot {\rm{AH }}}}{{{\rm{AD}}}} = \frac{{x \cdot \frac{{{\rm{a}}\sqrt 6 }}{3}}}{a} = \frac{{x\sqrt 6 }}{3}\);

\({\rm{DI}} = \frac{{{\rm{DE}} \cdot {\rm{DH}}}}{{{\rm{AD}}}} = \frac{{{\rm{x}} \cdot \frac{{{\rm{a}}\sqrt 3 }}{3}}}{{\rm{a}}} = \frac{{{\rm{x}}\sqrt 3 }}{3} \Rightarrow {\rm{MI}} = {\rm{DM}} - {\rm{DI}} = \frac{{{\rm{a}}\sqrt 3 }}{2} - \frac{{{\rm{x}}\sqrt 3 }}{3}.\)

Khi đó \(\tan \alpha  = \frac{{EI}}{{MI}} = \frac{{5\sqrt 2 }}{7} \Leftrightarrow \frac{{\frac{{x\sqrt 6 }}{3}}}{{\frac{{a\sqrt 3 }}{2} - \frac{{x\sqrt 3 }}{3}}} = \frac{{5\sqrt 2 }}{7} \Leftrightarrow x = \frac{5}{8}a\).

Do đó \(\frac{{{V_{{\rm{DBCE}}}}}}{{{{\rm{V}}_{{\rm{ABCD}}}}}} = \frac{{{\rm{DE}}}}{{{\rm{AD}}}} = \frac{5}{8} \Rightarrow \frac{{{{\rm{V}}_{{\rm{ABCE}}}}}}{{{{\rm{V}}_{{\rm{BCDE}}}}}} = \frac{3}{5}\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Các chất tham gia phản ứng tráng gương là có nhóm –CHO, lưu ý fructose có nhóm ketone nhưng trong môi trường \[N{H_3}\] fructose bị chuyển thành glucose nên fructose cũng tham gia phản ứng tráng gương.

→ Các chất tham gia phản ứng tráng gương: glucose, aldehyde acetic, fructose.

Lưu ý: acetylene tham gia phản ứng với \[AgN{O_3}\]nhưng không phải phản ứng tráng gương.

Chọn C.

Câu 2

Lời giải

Ta có \({\rm{v}}\left( {\rm{t}} \right) = {\rm{s'}}\left( {\rm{t}} \right) = {{\rm{t}}^2} - 2{\rm{t}} + 9\).

• \({\rm{v'}} = 2{\rm{t}} - 2 \Rightarrow {\rm{v'}} = 0 \Leftrightarrow {\rm{t}} = 1\).

• \[{\rm{v}}\left( 1 \right) = 8\,;\,\,{\rm{v}}\left( {10} \right) = 89\,;\,\,{\rm{v}}\left( 0 \right) = 9\].

Vậy vận tốc lớn nhất là \(89\,\,{\rm{m}}/{\rm{s}}\). Chọn A.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP