Gọi \(S\) là tập hợp các giá trị nguyên \(m\) để đồ thị hàm số \(y = \left| {3{x^4} - 8{x^3} - 6{x^2} + 24x - m} \right|\) có 7 điểm cực trị. Tổng các phân tử của \(S\) là
Gọi \(S\) là tập hợp các giá trị nguyên \(m\) để đồ thị hàm số \(y = \left| {3{x^4} - 8{x^3} - 6{x^2} + 24x - m} \right|\) có 7 điểm cực trị. Tổng các phân tử của \(S\) là
Quảng cáo
Trả lời:
Xét hàm số \({\rm{f}}({\rm{x}}) = 3{{\rm{x}}^4} - 8{{\rm{x}}^3} - 6{{\rm{x}}^2} + 24{\rm{x}} - {\rm{m}}\) trên \(\mathbb{R}\).
Ta có \({\rm{f'}}({\rm{x}}) = 12{{\rm{x}}^3} - 24{{\rm{x}}^2} - 12{\rm{x}} + 24\); \({\rm{f'}}(x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - 1}\\{x = 2}\\{x = 1}\end{array}} \right.\).
Bảng biến thiên của hàm số:
Dựa vào bảng biến thiên suy ra đồ thị hàm số \(y = \left| {3{x^4} - 8{x^3} - 6{x^2} + 24x - m} \right|\) có 7 điểm cực trị khi và chỉ khi đồ thị của hàm số \({\rm{f}}({\rm{x}}) = 3{{\rm{x}}^4} - 8{{\rm{x}}^3} - 6{{\rm{x}}^2} + 24{\rm{x}} - {\rm{m}}\) cắt trục hoành tại 4 điểm phân biệt
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{13 - m > 0}\\{8 - m < 0}\end{array} \Leftrightarrow 8 < m < 13} \right.\). Mà m nguyên nên \(m \in \left\{ {9\,;\,\,10\,;\,\,11\,;\,\,12} \right\} = S\).
Suy ra tổng tất cả các phần tử của tập \(S\) là 42. Đáp án: 42.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Các chất tham gia phản ứng tráng gương là có nhóm –CHO, lưu ý fructose có nhóm ketone nhưng trong môi trường \[N{H_3}\] fructose bị chuyển thành glucose nên fructose cũng tham gia phản ứng tráng gương.
→ Các chất tham gia phản ứng tráng gương: glucose, aldehyde acetic, fructose.
Lưu ý: acetylene tham gia phản ứng với \[AgN{O_3}\]nhưng không phải phản ứng tráng gương.
Chọn C.
Lời giải
Ta có \({\rm{v}}\left( {\rm{t}} \right) = {\rm{s'}}\left( {\rm{t}} \right) = {{\rm{t}}^2} - 2{\rm{t}} + 9\).
• \({\rm{v'}} = 2{\rm{t}} - 2 \Rightarrow {\rm{v'}} = 0 \Leftrightarrow {\rm{t}} = 1\).
• \[{\rm{v}}\left( 1 \right) = 8\,;\,\,{\rm{v}}\left( {10} \right) = 89\,;\,\,{\rm{v}}\left( 0 \right) = 9\].
Vậy vận tốc lớn nhất là \(89\,\,{\rm{m}}/{\rm{s}}\). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.