Câu hỏi:
12/07/2024 209Cho hàm số \({\rm{y}} = {\rm{f}}\left( x \right)\) có đồ thị như hình vẽ.
Đặt \(g(x) = f\left( {f(x) - 1} \right)\). Tìm số nghiệm của phương trình \(g'(x) = 0\)
Quảng cáo
Trả lời:
Ta có \(g'(x) = f'(x) \cdot f'\left( {f(x) - 1} \right)\)
\( \Rightarrow g'(x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f'(x) = 0}\\{f'\left( {f(x) - 1} \right) = 0}\end{array}} \right.\)
• Với \[f'(x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = a \in ( - 1\,;\,\,0)}\\{x = 1}\\{x = b \in (1\,;\,\,2)}\end{array}} \right.\]• Với \(f'\left( {f(x) - 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f(x) - 1 = a \in ( - 1\,;\,\,0)}\\{f(x) - 1 = 1}\\{f(x) - 1 = b \in (1\,;\,\,2)}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f(x) = a + 1 \in (0\,;\,\,1)}\\{f(x) = 2}\\{f(x) = b + 1 \in (2\,;\,\,3)}\end{array}} \right.\)
Từ đồ thị hàm số \({\rm{f}}({\rm{x}})\) ta có:
• Phương trình (1) có 2 nghiệm.
• Phương trình (2) có 2 nghiệm không trùng với 2 nghiệm của phương trình (1).
• Phương trình (3) có 2 nghiệm không trùng với 2 nghiệm của phương trình (1) và 2 nghiệm của phương trình (2).
Vậy phương trình \(g'(x) = 0\) có tất cả 9 nghiệm.
Đáp án: 9.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Các chất tham gia phản ứng tráng gương là có nhóm –CHO, lưu ý fructose có nhóm ketone nhưng trong môi trường \[N{H_3}\] fructose bị chuyển thành glucose nên fructose cũng tham gia phản ứng tráng gương.
→ Các chất tham gia phản ứng tráng gương: glucose, aldehyde acetic, fructose.
Lưu ý: acetylene tham gia phản ứng với \[AgN{O_3}\]nhưng không phải phản ứng tráng gương.
Chọn C.
Lời giải
Ta có: \({\rm{f'}}({\rm{x}}) = 12{{\rm{t}}^2} - 2{{\rm{t}}^3},\,\,{\rm{x}} \in \left[ {0\,;\,\,6} \right]\).
Khảo sát hàm \({\rm{f'}}({\rm{x}})\).
Ta có \({\rm{f''}}(t) = 24t - 6{t^2}\,;\,\,{\rm{f''}}(t) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 0}\\{t = 4}\end{array}} \right..\)
Vậy tốc độ truyền lớn nhất sẽ lớn nhất vào ngày thứ 4. Đáp án: 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.