Câu hỏi:
12/07/2024 194Có tất cả bao nhiêu giá trị nguyên của \(x\) thỏa mãn bất phương trình \({x^2} + {3^{{{\log }_2}x}} > {x^{{{\log }_2}5}}.\)
Quảng cáo
Trả lời:
Điều kiện: \(x > 0\). Đặt \(t = {\log _2}x \Rightarrow x = {2^t}\).
Khi đó \((*) \Leftrightarrow {\left( {{2^t}} \right)^2} + {3^t} > {\left( {{2^t}} \right)^{{{\log }_2}5}} \Leftrightarrow {4^t} + {3^t} > {5^t} \Leftrightarrow {\left( {\frac{4}{5}} \right)^t} + {\left( {\frac{3}{5}} \right)^t} > 1\).
Xét hàm số \[{\rm{f}}\left( t \right) = {\left( {\frac{4}{5}} \right)^{\rm{t}}} + {\left( {\frac{3}{5}} \right)^{\rm{t}}} \Rightarrow {\rm{f'}}\left( t \right) = {\left( {\frac{4}{5}} \right)^t}\ln \frac{4}{5} + {\left( {\frac{3}{5}} \right)^t}\ln \frac{3}{5} < 0\,,\,\,\forall t\]
Do đó hàm số \({\rm{f}}\left( t \right)\) nghịch biến trên \(\mathbb{R}\).
Mà \(f\left( 2 \right) = 1\) nên \[f\left( t \right) > 1 \Leftrightarrow f\left( t \right) > f\left( 2 \right) \Leftrightarrow t < 2 \Rightarrow {\log _2}x < 2 \Leftrightarrow x < 4\].
Đối chiếu điều kiện ta được: \(0 < x < 4\).
Vậy có 3 giá trị nguyên của \(x\) thỏa mãn. Đáp án: 3.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ \(t\) là \(f(t) = 4{t^3} - \frac{{{t^4}}}{2}\) (người). Nếu xem \(f'(t)\) là tốc độ truyền bệnh (người/ ngày) tại thời điểm \(t\) với \(t \in \left[ {0\,;\,\,6} \right]\). Hỏi vào ngày thứ mấy tốc độ truyền bệnh lớn nhất sẽ lớn nhất?
Câu 3:
Câu 4:
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{2x + 1}}\), biết \(F\left( 0 \right) = 1\). Tính \(F\left( { - 2} \right)\).
Câu 5:
Một vật chuyển động theo quy luật \(s = \frac{1}{3}{t^3} - {t^2} + 9t,\) với \(t\) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và \[s\] là quãng đường vật đi được trong thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận